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Abstract 

The elastic buckling strength is a key parameter in predicting the design strength in cold-formed 

steel member design. Particularly, for cold-formed steel sections, there are several buckling 

modes that are typically categorized: local-plate, distortional, and/or global buckling. As the 

necessary first step in design, finding the elastic buckling solution generally necessitates 

numerical analysis for elastic buckling prediction due to the complexity nature of cross-sectional 

instabilities though some simplified analytical solutions are available. Even the most commonly 

used tool such as finite strip method (FSM) that has the least modeling effort has its own 

challenges and complexities in buckling prediction. The paper aims to explore Machine Learning 

(ML) for predicting the elastic buckling strength of cold-formed steel members - shifting away 

from the mechanic-based numerical analysis. The Artificial Neural Network (ANN), a subgroup 

of machine learning algorithms, will be employed for the model training. The ML model will 

start with the commonly used sections, lipped channel section (C), where the dataset includes 

those from standard industrial shapes and parametrically randomized shapes. Then, those data 

will be categorized into geometrical data and material data as inputs and elastic buckling 

strengths and half-wavelengths of local and distortional buckling as the outputs. The developed 

ML models’ efficiency and accuracy will be evaluated. Further extension of the ML models to 

more generalized sections will be further explored.  

 

 

1. Introduction 

Cold-formed steel (CFS) members, characterized by their open cross-sections, present complex 

buckling behaviors with commonly knowns modes such as global, local, and distortional 

buckling. The Direct Strength Method (DSM) (Schafer, 2008), increasingly favored over the 

Effective Width Method (EWM) (Von Kármán et al., 1932; Winter, 1947), offers a direct 

approach to assessing load-bearing capacity with consideration of these buckling modes. DSM 

utilizes the full section properties, reduced material strength rather than calculating effective 
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section characteristics. This method relies on the premise that a member’s ultimate strength can 

be determined through its elastic buckling and yield stresses based on the observed experimental 

correlation. 

 

The critical elastic buckling stresses of CFS member can be determined through numerical or 

analytical solutions. The semi-analytical Finite Strip Method (FSM), a numerical approach, 

discretizes a CFS cross-section in strips. This method, particularly effective for prismatic 

sections with simply supported end conditions, yields the member’s signature curve, elucidating 

local, distortional, and global elastic buckling loads or moments as required in the specification. 

Each buckling mode correlates with a buckling half-wavelength, providing a comprehensive 

mode description. Pioneered by Hancock and his team, the Finite Strip Method’s use in stability 

analysis of CFS members was further elaborated by (Cheung & Tham, 1998; Hancock et al., 

2001; Schafer & Adany, 2006). This method’s significant potential in CFS design and behavior 

analysis is underlined by its successful application in various studies. In particularly, CUFSM (Li 

& Schafer, 2010), an open-source software tool implementing the seme-analytical FSM, has 

been widely used in analysis and design of CFS members. Meanwhile, shell Finite element 

models (Cook, 2007; Zienkiewicz & Taylor, 2005), a more powerful method for elastic buckling 

of CFS members, could tackle more complex geometry, boundary, and loading conditions. 

However, a significant amount of visual judgment is often required to categorize these buckling 

solutions into local, distortional, or global buckling for use in specifications. The instability 

modes in finite element models typically exhibit coupling, adding to the complexity of mode 

identification. To enable a formal definition of buckling modes, there are two methods recently 

developed in the past two decades: Generalized Beam Theory (GBT) (Schardt, 1989) and 

constrained Finite Strip Method (cFSM) (Schafer & Adany, 2006) including a variety of 

extension or enhancement (Elzein, 2013; Harik et al., 1991). Formal mode decomposition and 

identification can be performed through these methods, which enables a deeper digest of the 

buckling behaviors including the potential interactive behaviors. On the other hand, analytical 

solutions for the elastic buckling of cold-formed steel members based on simplification of the 

classic theories are often available in the design specifications, such as those for local and 

distortional buckling in AISI (AISI, 2020). Improving the accuracy of the analytical equations 

are also consistently pursued, such as the local buckling for lipped channels in (Ding & Schafer, 

2023). In addition, for commonly used sections, these elastic buckling solutions are conveniently 

tabulated in resources such as the AISI Cold-Formed Steel Design Manual (2017) (Manual, 

2017) and the CFSEI Tech Note G103-11 (Li & Schafer, 2011), providing accessible references 

for engineers.  

 

While numerical tools and analytical equations based on the mechanics offer foundational 

insights into elastic buckling, the integration of machine learning applications in CFS and 

broader structural contexts marks a significant leap forward, bridging traditional methods with 

advanced predictive capabilities (Pitton et al., 2019; Tohidi & Sharifi, 2015; Wang et al., 2023; 

Wu et al., 2019; Zarringol et al., 2020). As one of the machine learning methods, Artificial 

Neural Networks (ANNs), simulating the learning mechanisms of biological organisms, have 

been increasingly applied in structural engineering for buckling behavior prediction. Resembling 

the human brain structure, ANNs consist of numerous processing elements and excel at 

establishing accurate relationships between inputs and outputs in datasets lacking specific 

solutions. Pioneering this application in the field were researchers like Kaveh (Iranmanesh & 
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Kaveh, 1999; Kaveh et al., 2018; Kaveh et al., 2001; Kaveh & Iranmanesh, 1998), who 

conducted extensive studies on the predictive capabilities of neural networks in structural 

domains. Successful implementations include Waszczyszyn and Bartczak’s (Waszczyszyn & 

Bartczak, 2002) use of Backpropagation Neural Networks (BPNN) for predicting buckling loads 

in cylindrical shells under axial compression and Markopoulos et al (Markopoulos et al., 2007) 

.’s application of ANNs with Levenberg-Marquardt and backpropagation algorithms to predict 

failure modes in PVC cylindrical shells. The application of ANNs in cold-formed steel (CFS) is 

also expanding. Pala (Pala, 2006) utilized ANNs to estimate elastic torsional buckling stresses in 

CFS C-sections under pure compression and bending, leading to the development of ANN-based 

predictive equations. Pala and Caglar (Pala & Caglar, 2007) further studied the impact of 

geometrical parameters on torsional buckling stresses using these equations. In another study, 

Guzelbey et al. (Guzelbey et al., 2006) trained an ANN with experimental data to predict failures 

in cold-formed steel webs, demonstrating greater accuracy compared to current design codes. 

Degtyarev (Degtyarev, 2021) trained an ANN model to predict elastic shear buckling loads and 

ultimate shear strengths in CFS C-sections, proving its superiority over code-prescribed design 

equations. Furthering this research, Degtyarev and Naser (Degtyarev & Naser, 2021) compared 

five different machine learning enhancement algorithms for predicting elastic shear buckling 

loads and shear strengths in cold-formed thin-walled steel components, with the CatBoost 

algorithm emerging as the most accurate. 

 

Hence, the aim of this study is to determine the cross-sectional buckling strength of cold-formed 

steel using a machine learning model. This approach seeks to leverage the advanced capabilities 

of machine learning to enhance the accuracy and efficiency of predicting buckling strength in 

these CFS members. In this study, an Artificial Neural Network (ANN) algorithm is employed to 

predict the elastic critical buckling load of cold-formed lipped channel steel members. Utilizing a 

dataset based on 260,000 sectional parameters and elastic buckling calculations from CUFSM, 

the data is divided into training, testing, and validation sets for neural network model training. 

The model applies early stopping (Morgan & Bourlard, 1989) to control overfitting and uses 

random grid search (Bergstra & Bengio, 2012) for hyperparameter selection. Various ANN 

models with different inputs, outputs, and hidden layer counts were constructed. After finalizing 

the hyperparameters, each model type was trained ten times to identify the most effective model, 

resulting in a total of 180 trained models. 

 

2. Elastic Buckling prediction methodology and machine learning data development 

2.1 Two-step approaching using finite strip method and constrained finite strip method 

Local and distortional buckling loads of lipped channel sections are determined using the semi-

analytical finite strip method under simply supported end boundary conditions as implemented in 

CUFSM software (Li & Schafer, 2010). Both buckling loads are determined from the signature 

curve. Typically, the signature curve has two distinct minima, unique minima, corresponding to 

local and distortional buckling. However, the signature curve is not always as unambiguous with 

unique minima. It could have either or both minima “indistinct”, characterized as non-unique 

minima. For cross-sections with non-unique minima in the signature curve, the two-step 

procedure for identifying unique minimum is employed (Li & Schafer, 2010) involving the 

cFSM solutions. 

 

2.2 Machine learning data development 
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In accordance with the product specification range for cold-formed steel (CFS) members as 

outlined by the SFIA (shown in Figure 1(c)), 260,000 different CFS lipped channel sections were 

randomly generated. The dimensions of these sections, including the out-out member depth (H), 

flange width (B), lip length (D), and material thickness (t), are depicted in Figure 1 (a), while the 

centerline dimensions are presented in Figure 1 (b). All the Finite Strip Method (FSM) models 

are designed using the centerline dimensions. 

 

 
Figure 1 (a) CFS lipped channel section (b) Centerline dimensions of lipped channel sections (c) dimension limits 

 

Boxplots (Figure 2) and histograms with kernel density estimation (Figure 3) have been 

constructed. The boxplot provides a visual summary of data distribution, showing the median, 

quartiles, and outliers. The boxplot illustrates the distribution of four variables: Hc, Bc, Dc, and t. 

The median of each variable is marked by the red line within the box, indicating the central 

tendency. The blue boxes extend from the first quartile to the third quartile, representing the 

interquartile range which encapsulates the middle 50% of the data. The ‘whiskers’ extend to the 

minimum and maximum values within a 1.5 interquartile range from the lower and upper 

quartiles, respectively. There are not points outside this range, which would be considered 

outliers. These visual metrics reflect the variability and symmetry of the data distribution. 

 

 
Figure 2 Box plot for dimensions of lipped channel sections 

 

The histogram, enhanced with kernel density estimation, offers a smooth curve representing the 

data’s density or frequency distribution. Normalizing the histogram ensures that its area sums to 

one, allowing for the comparison of distributions across different scales or datasets. This 
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normalization is crucial for accurately interpreting the data’s underlying distribution, regardless 

of sample size or unit differences. Figure 3 depicts histograms with overlaid kernel density 

estimates for four variables. Each histogram is color-coded to visually represent frequency 

distribution. The kernel density estimation, outlined in red, provides a smoothed curve to 

highlight the central tendency and distribution spread.  

 

 
Figure 3 Histograms of generated sections 

 

As observed from Figure 2 and Figure 3, the 260,000 randomly generated samples are uniformly 

distributed across the entire dimensional space. This uniform distribution is essential for ensuring 

a comprehensive analysis across the spectrum of possible geometrical configurations of the 

lipped channel cold-formed steel sections. 

 

All FSM models are computed within CUFSM to determine the critical forces for elastic local 

buckling (PcrL) and elastic distortional buckling (PcrD), along with their corresponding half-

wavelengths (λcrL and λcrD). In addition, dimensionless parameters such as Hc/t, bc/t, dc/t, hc/bc, 

and bc/dc are calculated to provide further insight into the geometric properties of the cold-

formed steel sections relative to PcrL, PcrD, λcrL and λcrD. 

 

The correlation coefficient is a statistical measure that calculates the strength of the relationship 

between two variables. The correlation coefficient, often denoted as r, is a numerical measure 

that expresses the degree of linear relationship between two variables. It is commonly defined by 

the Pearson correlation coefficient Eq. (1): 

 
( )( )

( ) ( )
2 2

i i

i i

x x y y
r

x x y y

− −
=

− −



 
 (1) 

Where xi and yi are the values of the two variables, and x , y  are the means of those variables, 

respectively. The value of r ranges from -1 to 1, with -1 indicating a perfect negative linear 

relationship, 0 indicating no linear relationship, and 1 indicating a perfect positive linear 

relationship. The heatmap (Figure 4) is a visual representation of the correlation matrix, 

illustrating the Pearson correlation coefficients between various parameters of the section. This 

heatmap is essential for identifying relationships between dimensions and buckling parameters, 

guiding the feature selection for predictive models.  
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Figure 4 Correlation matrix for the 9 inputs and 4 outputs parameters 

 

Figure 5 displays a series of scatter plots, each depicting the density of data points correlating 

parameters related to the structural characteristics of cold-formed steel members with their 

elastic buckling properties. The color gradient represents the concentration of data points, with 

warmer colors indicating higher density regions. Normalizing the density in the scatter plot 

matrix helps understand the distribution of data points within the parameter space, regardless of 

the absolute number of observations, thus demonstrates a holistic view of the data’s density. 

 

Based on the analysis of the scatter plots in Figure 5, we observe that the critical local buckling 

load (PcrL) and the critical distortional buckling load (PcrD) exhibit a negative correlation with the 

geometric ratios of height-to-thickness (Hc/t), width-to-thickness (Bc/t), depth-to-thickness (Dc/t), 

and height-to-width (Hc/Bc). In contrast, the half-wavelength for local buckling (λcrL) shows a 

positive correlation with the height-to-thickness (Hc/t) and height-to-width (Hc/Bc) ratios. 

Similarly, the half-wavelength for distortional buckling (λcrD) is positively correlated with the 

height-to-thickness (Hc/t), width-to-thickness (Bc/t), and depth-to-thickness (Dc/t) ratios.  

 



 7 

 
Figure 5 Scatter plot matrix  

 

3. Machine learning framework 

Neural networks mimic the functioning of the biological nervous system, with elements 

operating in parallel. These elements’ interconnections are crucial for the network’s function. 

Training involves adjusting the weights of these connections to achieve desired outputs from 

given inputs, as shown in Figure 6. Through iterative training with many input and target pairs, 

the network learns to approximate the target output closely. This learning process is akin to 

finding the optimal pathways in a complex landscape based on feedback. 

 
Figure 6 Basic methodology used in neural network training 
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The flowchart in Figure 7 delineates a structured approach to developing an Artificial Neural 

Network (ANN) model for computational analysis. It initiates with ‘Data Preparation,’ where 

data is generated using CUFSM (i.e., computational analysis) and then partitioned into distinct 

training, validation, and testing subsets. Subsequently, the ‘Determining ANN Architecture’ 

phase involves specifying the input and output nodes, the number of nodes in hidden layers, and 

the learning rate. ‘Training ANN’ encompasses selecting activation and loss functions, followed 

by the actual construction and training of the ANN model. The final phase, ‘Evaluation of ANN,’ 

entails the assessment of the ANN model, extraction of parameters, and the preservation of the 

trained model for future application. This diagram offers a comprehensive roadmap for the 

development and optimization of ANN models within a scientific research framework. 

 

 
Figure 7 ANN construction, training, and evaluation process 

 

The schematic chart in Figure 8 illustrates a multilayer perceptron neural network architecture, 

detailing the flow from input to output. In the input layer, predictors are denoted as pi, which 

connect through weighted paths (weights ,

l

j kw ) to the hidden layer. Each neuron in the hidden 

layer sums its weighted inputs and bias (
1

jb ) before applying an activation function (Figure 9 (a)) 

1f  to produce an output 
1

ja . The process repeats from the hidden to the output layer, with 

outputs 
2

ja  generated after applying a second activation function (Figure 9 (b)) 2f . 
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Figure 8 Architecture of ANN 

 
Figure 9 Activation functions (a) tansig; (b) purelin 

The ANN Forward propagation process can mathematically be expressed as follows: 

 
1l l l l

j jk k j

k

a f w a b− 
= + 

 
  (2) 

Where ,

l

j kw is the weight for the connection from thk neuron in the ( )1
th

l − layer to the thj  neuron 

in thl  layer. 
l

jb  is the bias of the thj  neuron in the thl  layer. 
l

ja  is the activation of the thj  neuron 

in thl  layer.  

 

Backpropagation in neural networks is a method used for refining the model’s weights and biases 

in response to the error observed between the predicted and targeted outputs. It involves 
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calculating the gradient of the loss function with respect to each weight by the chain rule, 

propagating the error backward from the output layer to the input layer. This gradient informs 

how the weights should be adjusted to minimize the loss. The process iteratively updates the 

weights and biases to reduce prediction error, thereby improving the model’s performance over 

successive training epochs. The cost function is manifested in various incarnations, notably 

Mean Absolute Error (MAE), Mean Squared Error (MSE), among others. The study employs 

Levenberg-Marquardt algorithm for optimization, numerically deriving the requisite gradients 

for this minimization. 

 

The Levenberg-Marquardt algorithm was designed to approach second-order training speed 

without having to compute the Hessian matrix. When the performance function has the form of a 

sum of squares, then the Hessian matrix can be approximated as: 

 TH J J=  (3) 

and the gradient can be computed as: 

 Tg J e=  (4) 

where J is the Jacobian matrix that contains first derivatives of the network errors with respect to 

the weights and biases, and e is a vector of network errors. The Levenberg-Marquardt algorithm 

uses this approximation to the Hessian matrix in the following Newton-like update: 

 

1
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1

1

I

I

T T

k k
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w w J J J e

b b J J J e





−

+

−

+

 = − + 

 = − + 

 (5) 

When the scalar µ is zero, this is just Newton’s method, using the approximate Hessian matrix. 

When µ is large, this becomes gradient descent with a small step size. Newton’s method is faster 

and more accurate near an error minimum, so the aim is to shift toward Newton’s method as 

quickly as possible. Thus, µ is decreased after each successful step (reduction in performance 

function) and is increased only when a tentative step would increase the performance function. In 

this way, the performance function is always reduced at each iteration of the algorithm. 

 

Figure 10 represents a typical data partitioning strategy for machine learning workflows, where 

the dataset is divided into subsets for training, validation, and testing. It shows that 80% of the 

total dataset is designated for training, which includes a subset of 20% used for validation to 

mitigate overfitting. The remaining 20% of the overall dataset is earmarked for the test set, 

which is utilized to evaluate the model’s efficacy on data it has not previously encountered, 

ensuring the assessment of the model’s predictive power and generalization ability. 

 

 
Figure 10 Dataset splitting for training, validation, and test. 
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To neutralize the scale differences among data points, normalization is applied to the dataset. 

The common formula for normalization brings the values into a consistent range, typically [0, 1] 

or [-1, 1]. This is achieved by subtracting the minimum value and dividing by the range of the 

dataset. The formula (Eq. (6)) for scaling to [-1, 1] is: 

 
( )

( ) ( )

2 min( )
' 1

max min

x x
x

x x

−
= −

−
 (6) 

where x is the original value, 'x  is the normalized value, and min(x) and max(x) are the 

minimum and maximum values in the data, respectively. This transformation enhances the 

algorithm’s convergence and performance by treating all variables equally. 

 

Random Grid Search (Bergstra & Bengio, 2012) is a method for hyperparameter optimization 

where a grid of hyperparameter values is set up and random combinations are selected and 

evaluated. This process offers a pragmatic alternative to exhaustive grid search, particularly 

when the search space is large. By randomly sampling the space, it provides a cost-effective way 

of approximating the best hyperparameters for a given model. This method balances the 

thoroughness of exploring the hyperparameter space with the computational efficiency required 

in practice. 

 

In the outlined approach, the hyperparameter space for a neural network is defined, with the 

number of neurons in the hidden layer ranging from 2 to 128 in increments of 2, and learning 

rates set at 0.0001, 0.001, 0.01, and 0.1. A random grid search is employed to select 

combinations of neurons and learning rates, ensuring a minimum coverage of 25% of the total 

hyperparameter space. To prevent overfitting, training ceases if the Mean Squared Error (MSE) 

on the validation set increases for six consecutive iterations. An epoch consists of a full forward 

and backward pass of all samples through the network, with the maximum number of epochs set 

at 1000. The activation functions are ‘tansig’ (Figure 9 (a)) for input to hidden layers and 

‘purelin’ (Figure 9 (b)) for hidden to output layers. The optimal hyperparameters are those that 

yield the best validation set performance, and these are designated as the best hyperparameters 

for the model. 

 

Acknowledging the limitations posed by random initial weights and biases in neural network 

training, it’s a common practice to train the network multiple times using the optimal 

hyperparameter settings. This approach helps to mitigate the impact of randomness in the initial 

conditions, thereby providing a more reliable assessment of the network’s performance. By 

repeating the training process with the same optimal hyperparameters, the model’s results with 

best-performing instance can be selected, which improves the robustness and generalizability of 

the neural network model. 

 

4. Machine Learning Training results 

Several machine learning models are developed with a variety of inputs and outputs in this study. 

 

4.1 Model I: 4 dimensional inputs and 2 critical load outputs 

Figure 11 illustrates this neural network architecture with the input, hidden, and output layers. 

The input layer nodes, denoted by Hc, Bc, Dc, and t, represent the features fed into the network. 

These inputs are connected to the first hidden layer, which processes the inputs through a series 
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of weighted connections. The output layer, depicted with nodes PcrL and PcrD, signifies the 

network’s final predictions.  

 

 
Figure 11 Architecture of the ANN with 4 inputs, 2 outputs and 1 hidden layer 

 

The optimal hyperparameter configuration, as determined by random grid search, encompasses a 

neural network with 124 neurons in the hidden layer, a learning rate of 0.01, and the employment 

of ‘tansig’ and ‘purelin’ as activation functions for the respective layers. The Levenberg-

Marquardt (L-M) training algorithm was adopted, with a stopping criterion set at 1000 epochs, or 

if the validation set error increased for six consecutive epochs, indicating potential overfitting. 

This parameterization is poised to balance model complexity with computational efficiency and 

generalization performance. 

 

Figure 12 illustrates the training progression of the neural network model, represented by the 

Mean Squared Error (MSE) over the course of 1000 epochs. The training and validation error 

rates are plotted on a logarithmic scale, demonstrating a rapid decrease in MSE as the number of 

epochs increases, and then plateauing, indicating the convergence of the model. The close 

proximity of the training and validation lines suggests that the model is generalizing well without 

overfitting. 

 

Figure 13 presents two histograms displaying the frequency distribution of errors for two 

different predicted variables, PcrL and PcrD, in a neural network model. The histograms are 

overlaid with a ‘Zero Error’ line to indicate the point of perfect prediction. The distribution of 

errors across different magnitudes suggests the model’s accuracy in predicting the critical 

buckling loads for local (PcrL) and distortional (PcrD) buckling. The concentration of data around 

the zero-error line indicates high prediction accuracy, while the spread provides insights into the 

model’s error variance. 
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Figure 12 Performance of the ANN model 

 

 
Figure 13 Error histogram for network 

 

Figure 14 exhibits two scatter plots comparing the predicted critical buckling loads, PcrL and PcrD, 

from a Backpropagation Neural Network (BPNN) against the calculated values from CUFSM. 

Figure 14 (a) correlates PcrL and Figure 14 (b) for PcrD. The color gradient represents density, 

indicating the concentration of data points. Both plots include a fit line and a 1:1 line, with the fit 

line demonstrating the regression equation, coefficient of determination (R2) (Eq. (7)), 

correlation coefficient (R) (Eq. (1)), and Mean Absolute Percentage Error (MAPE) (Eq. (8)). The 

close alignment of data points along the 1:1 line and high R2 values close to unity suggest a 

strong agreement between the BPNN predictions and CUFSM calculations, signifying high 

model accuracy. 

 

The coefficient of determination, denoted as 
2R  , is calculated using the Eq. (7): 
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where iy  are the observed values, ŷ  are the predicted values, and y  is the mean of the observed 

data. The Mean Absolute Percentage Error (MAPE) is calculated as Eq. (8): 

 1

ˆ100 n
i i

i i

y y
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n y=

−
= 

 (8) 

where iy  are the actual values and ŷ  are the forecasted values, and n is the number of 

observations. MAPE expresses accuracy as a percentage of the error. 

 

 
Figure 14 Comparisons of PcrL (a) and PcrD (b) predicted by BPNN and CUFSM 

 

4.2 Model II: 4 dimensional inputs and 2 critical load and 2 half-wavelength outputs 

Figure 15 represents a feedforward neural network architecture, specifically designed for the 

prediction of structural parameters. The input layer nodes, signified by Hc, Bc, Dc, and t, 

correspond to the structural features, PcrL, PcrD, λcrL, and λcrD. 

 

The optimal hyperparameter configuration, as determined by random grid search, encompasses a 

neural network with 120 neurons in the hidden layer, a learning rate of 0.0001, and the 

employment of ‘tansig’ and ‘purelin’ as activation functions for the respective layers. The 

Levenberg-Marquardt (L-M) training algorithm was utilized, with a stopping criterion set at 

1000 epochs, or if the validation set error increased for six consecutive epochs, indicating 

potential overfitting.  
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Figure 15 Architecture of the ANN with 4 inputs, 4 outputs and 1 hidden layer 

 

Figure 16 represents a training curve of a neural network, with the Mean Squared Error (MSE) 

plotted against the number of epochs during training and validation phases. The MSE is on a 

logarithmic scale to better visualize the rate of decrease. Both training and validation errors 

decrease sharply and then plateau, indicating the model has reached convergence. The 

convergence suggests that the model has learned the underlying patterns without overfitting, as 

indicated by the validation error stabilizing alongside the training error. 

 

 
Figure 16 Performance of the ANN model 

 

Figure 17 present histograms of prediction errors from a neural network model. In the four 

subgraphs, the x-axis signifies the error magnitude, and the y-axis indicates the frequency of 
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these errors. Figure 17 (a) shows the errors for the predicted critical local buckling load (PcrL), 

and the Figure 17 (b) for the predicted critical distortional buckling load (PcrD). Figure 17 (c) 

showcases the frequency of errors for the critical local buckling load (λcrL), while Figure 17 (d) 

illustrates the frequency of errors for the critical distortional buckling load (λcrD). A ‘Zero Error’ 

line is included to benchmark perfect predictions. The dense accumulation of data around this 

line in both histograms indicates a high accuracy of the neural network model, with the majority 

of predictions closely aligning with the true values computed by CUFSM.  

 

 
(a) (b) 

 
(c) (d) 

Figure 17 Error histogram of PcrL, PcrD, λcrL and λcrD for network: (a) PcrL; (b) PcrD; (c) λcrL; (d) λcrD. 

 

The provided figures represent scatter plots correlating the predicted results from a 

Backpropagation Neural Network (BPNN) with calculated values using the CUFSM method for 

different buckling loads. Figures (a) and (b) show the relationships for critical local (PcrL) and 

distortional (PcrD) buckling loads, respectively, whereas Figures (c) and (d) correspond to the 
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half-wavelengths for local (λcrL) and distortional (λcrD) buckling. The plots include regression fit 

lines, the line of perfect prediction (1:1 line), and display the regression equation, coefficient of 

determination (R2) (Eq. (7)), correlation coefficient (R) (Eq. (1)), and Mean Absolute Percentage 

Error (MAPE) (Eq. (8)). The color gradient signifies the density of data points around the fit line, 

with denser regions indicating higher concentrations of data points. The near-perfect R and R2 

values and low MAPE percentages suggest an excellent predictive performance of the BPNN 

model. The observation indicates that the predictive performance of the model, as measured by 

Mean Absolute Percentage Error (MAPE), shows larger discrepancies in estimating PcrL and PcrD, 

with MAPE values of 6.6815% and 2.5956% respectively, compared to the half-wavelength 

parameters λcrL and λcrD. This may suggest differences in model sensitivity or complexity in 

capturing the phenomena governing PcrL and PcrD. 

 

 
Figure 18 Comparisons of PcrL, PcrD, λcrL and λcrD predicted by BPNN and CUFSM 

 

4.3 Model III: more inputs 

Figure 19 exhibits a neural network structure delineating the data flow from the input to the 

output layer. The input layer consists of structural features including geometric dimensions and 

their ratios: Hc, Bc, Dc, t, Hc/t, Bc/t, Dc/t, Hc/Bc, and Bc/Dc. These input neurons are fully 

connected to a hidden layer, which in turn connects to the output layer. The output neurons 

correspond to the critical local buckling load (PcrL), critical distortional buckling load (PcrD), and 

the associated half-wavelengths for local (λcrL) and distortional (λcrD) buckling.  
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The optimal hyperparameter configuration, as determined by random grid search, encompasses a 

neural network with 124 neurons in the hidden layer, a learning rate of 0.001, and the 

employment of ‘tansig’ and ‘purelin’ as activation functions for the respective layers. The 

Levenberg-Marquardt (L-M) training algorithm was utilized, with a stopping criterion set at 

1000 epochs, or if the validation set error increased for six consecutive epochs, indicating 

potential overfitting.  

 

 
Figure 19 Architecture of the ANN with 9 inputs, 4 outputs and 1 hidden layer 

 

Figure 20 depicts the Mean Squared Error (MSE) in a logarithmic scale over the number of 

epochs during the training and validation of a neural network model. Both training and validation 

errors rapidly decrease and plateau early in the training process, indicating quick convergence 

and suggesting that the model is learning efficiently. The convergence of the training and 

validation errors suggests a well-fitted model with good generalizability. The absence of 

significant divergence between the training and validation lines towards the latter epochs implies 

that the model is not overfitting to the training data. 

 

Figure 21, showcases a series of histograms that illustrate the frequency of prediction errors for a 

neural network model. Subfigures (a) and (b) display the error distributions for the predicted 

critical local buckling load (PcrL) and critical distortional buckling load (PcrD), respectively. 

Subfigures (c) and (d) detail the error frequencies for the predicted half-wavelengths associated 

with local (λcrL) and distortional (λcrD) buckling loads. A ‘Zero Error’ line is present in each 

histogram to benchmark the model’s prediction accuracy. The histograms are instrumental for 

evaluating the model’s precision, as they reveal the distribution and concentration of errors 

relative to perfect predictions. 
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Figure 20 Performance of the ANN model 

 

Figure 22 displays scatter plots with regression lines and density coloration that compare the 

output of a Backpropagation Neural Network (BPNN) against CUFSM-calculated values for 

structural parameters. Specifically, subfigures (a) and (b) depict the predicted versus calculated 

values for critical local (PcrL) and distortional (PcrD) buckling loads, respectively. Subfigures (c) 

and (d) showcase the predicted versus calculated half-wavelengths for local (λcrL) and 

distortional (λcrD) buckling. Each plot includes a fit line and a 1:1 line to indicate perfect 

predictions, with the regression equation, coefficient of determination (R2) (Eq. (7)), correlation 

coefficient (R) (Eq. (1)), and Mean Absolute Percentage Error (MAPE) (Eq. (8)) provided for 

quantitative assessment. The density gradient within the plots reflects the concentration of data 

points around the fit line, demonstrating the predictive accuracy of the model across different 

data densities. While the Mean Absolute Percentage Error (MAPE) is relatively low for all four 

parameters, it is noted that the MAPE for PcrL is comparatively higher at 5.3436%. This suggests 

that while the model’s overall predictive performance is robust, there is a slightly greater average 

deviation in the prediction of PcrL from the actual values when compared to the other parameters. 
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(a) (b) 

 
(c) (d) 

Figure 21 Error histogram of PcrL, PcrD, λcrL and λcrD for network 
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Figure 22 Comparisons of PcrL, PcrD, λcrL and λcrD predicted by BPNN and CUFSM 

 

4.4 Model IV: ML model with 2 hidden layers 

To enhance the predictive capabilities of the neural network model, an investigation into the 

addition of a second hidden layer was conducted. This architectural modification, as depicted in 

the referenced Figure 23, involves the implementation of a neural network with two hidden 

layers. The adjustment aims to capture more complex patterns and interactions within the data, 

potentially improving the accuracy and generalization of the model’s predictions. 

 

Figure 23 illustrates a neural network architecture with two hidden layers. The input layer 

contains neurons representing both geometric dimensions of structural elements and their derived 

ratios, signifying the model’s inputs. These inputs are connected to the first hidden layer, which 

then connects to the second hidden layer, adding a level of abstraction and capability to capture 

more complex relationships within the data. The second hidden layer connects to the output 

layer, which predicts several structural parameters: the critical local buckling load (PcrL), critical 

distortional buckling load (PcrD), and their respective half-wavelengths (λcrL and λcrD).  

 

The optimal hyperparameter configuration, as determined by random grid search, encompasses a 

neural network with 124-64 neurons in the hidden layers, a learning rate of 0.1, and the 

employment of ‘tansig’ and ‘purelin’ as activation functions for the respective layers. The 

Levenberg-Marquardt (L-M) training algorithm was utilized, with a stopping criterion set at 

1000 epochs, or if the validation set error increased for six consecutive epochs, indicating 
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potential overfitting. This parameterization is poised to balance model complexity with 

computational efficiency and generalization performance.  

 

 
Figure 23 Architecture of the ANN with 9 inputs, 4 outputs and 2 hidden layer 

 

Figure 24 presents the Mean Squared Error (MSE) during the training and validation phases of a 

neural network over 361 epochs. The MSE is plotted on a logarithmic scale to better visualize 

the range of error magnitudes. Both the training (blue) and validation (orange) curves show a 

rapid decrease in error, suggesting that the model is learning effectively from the data. The 

convergence of these lines indicates that the model generalizes well without overfitting, as the 

validation error remains low and closely follows the training error. This is a positive indication 

of the model’s robustness. 

 

Figure 25 exhibits a series of histograms detailing the frequency of errors between predicted and 

actual values for different structural parameters within a neural network model. The histograms 

compare errors in predictions of critical local (PcrL) and distortional (PcrD) buckling loads, as well 

as their corresponding half-wavelengths (λcrL and λcrD). Each histogram is juxtaposed with a 

‘Zero Error’ line to indicate the ideal outcome where the predicted values exactly match the 

actual ones. The distribution of errors across these histograms provides insights into the accuracy 

and precision of the neural network’s predictive capabilities. 

 Figure 25 (a) displays the error distribution for PcrL, with the majority of the frequency bars 

clustered close to the Zero Error line, which suggests high accuracy in prediction.  

 Figure 25 (b) shows the error distribution for PcrD, where the histogram bars are also 

concentrated near the Zero Error line, indicating a similarly high predictive accuracy. 
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 Figure 25 (c) represents the error distribution for λcrL, once again demonstrating a tight 

grouping near the Zero Error line, suggesting that the predictions are generally accurate with 

minimal deviation.  

 Figure 25 (d) presents the error distribution for λcrD, with the histogram bars showing a 

similar pattern to the other parameters, clustered near the Zero Error, which implies 

precision in the neural network’s predictive performance. 

 

 
Figure 24 Performance of the ANN model 

 

 

 
(a) (b) 
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(c) (d) 

Figure 25 Error histogram of PcrL, PcrD, λcrL and  λcrL for network 

 

Figure 26 exhibits a dense clustering of data points along the line of perfect agreement (the 1:1 

line), which indicates a high level of precision in the neural network’s predictive capability. This 

is further substantiated by the regression equations and the statistical indices provided: the 

coefficient of determination (R2), the Pearson correlation coefficient (R), and the Mean Absolute 

Percentage Error (MAPE). In all cases, the R2 and R values are extremely close to 1, and the 

MAPE values are low, signaling excellent model performance. The color bar to the right of each 

plot represents the density of data points, with warmer colors indicating a higher concentration of 

points.  

 Figure 26 (a) shows a plot for PcrL with a nearly perfect R2 and R value of 1.0000, and a 

MAPE of 3.2423%, indicating very high predictive accuracy.  

 Figure 26 (b) displays results for PcrD, again with R2 and R values of 1.0000, and a slightly 

lower MAPE of 1.1052%, suggesting a similarly high level of prediction accuracy.  

 Figure 26 (c) introduces the λcrL parameter, where the R2 is 0.9989, R is 0.9995, and MAPE 

is 1.0146%, showing a marginal decrease in prediction precision but still within an excellent 

range.  

 Figure 26 (d) presents λcrD data, with a R2 of 0.9990, R of 0.9995, and MAPE of 1.0391%, 

demonstrating a consistency in the high predictive ability of the BPNN for this parameter as 

well.  

 

The dashed lines represent the fit line from the regression analysis, which is used to generate the 

equations and statistical indices. These plots are a strong visual representation of the neural 

network’s ability to accurately predict structural parameters. 
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Figure 26 Comparisons of PcrL, PcrD, λcrL and λcrD predicted by BPNN and CUFSM 

 

 

5. Comparison with AISI analytical equations 

The current AISI S100 (2020) Appendix 2 provides analytical expressions of critical local 

buckling stresses PcrL of individual plate elements of a cross section. The general equation for 

critical local buckling stress in AISI S100 (2020) is shown in Eq. (9) and Eq. (10). 

 crL g crLP A F=  (9) 

where Ag is gross cross-sectional area. 
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where k is the plate buckling coefficient, t is the plate thickness, w is the plate flat width, E is 

Young’s modulus and μ is Poisson’s ratio.  

 For stiffened element under uniform compression from AISI S100 Section 1.1: k = 4  

 For unstiffened element under pure compression per AISI S100 Section 1.2.1: k = 0.43 

 

The elastic distortional buckling load in AISI S100 (2020), Pcrd, shall be calculated as follows 

Eq. (11) and Eq. (12): 

 crD g crDP A F=  (11) 

where Ag is gross cross-sectional area. 
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See AISI S100 (2020) Eq. 2.3.3.1-1 to Eq. 2.3.3.1-7 for detailed formulas. 

 

The comparison between the (AISI S100 (2020)) formulas and the Backpropagation Neural 

Network (BPNN) models is conducted using an identical test set. This direct comparison allows 

for an assessment of the predictive accuracy and generalization capability of the BPNN against 

the established AISI empirical formulations. 

 Figure 27 consists of four scatter plots (Figure 27 (a), (b), (c), (d)), which are used to assess 

the accuracy of two different predictive models: an ANN model, presumably a Back 

Propagation Neural Network (BPNN), and an analytical model based on the (AISI S100 

(2020)) standards.  

 Figure 27 (a) contrasts the AISI analytical predictions for PcrL with those calculated by the 

CUFSM. The plot shows a fair correlation, as indicated by the coefficient of determination 

(R2) of 0.9542 and the Pearson correlation coefficient (R) of 0.9768. However, the Mean 

Absolute Percentage Error (MAPE) is relatively high at 27.6046%, suggesting moderate 

discrepancies between the methods. 

 Figure 27 (b) demonstrates the BPNN predicted values for PcrL versus the CUFSM 

calculations. This model exhibits an excellent fit, with both R2 and R reaching the ideal 

value of 1.0000 and a low MAPE of 3.2432%, indicating very high predictive accuracy.  

 Figure 27 (c) shows the AISI analytical predictions for PcrD against CUFSM calculations, 

with a R2 of 0.9510 and R of 0.9752. The MAPE is also high at 27.3183%, similar to Figure 

26 (a), reflecting significant predictive variance.  

 Figure 27 (d) displays the BPNN predicted values for PcrD, closely aligning with the 

CUFSM calculations, as seen by the ideal R^2 and R values of 1.0000 and a minimal MAPE 

of 1.1052%, showcasing the superior predictive performance of the BPNN model. 

 

The dashed line in each plot represents the regression fit, while the solid line depicts the ideal 1:1 

correspondence between predicted and calculated values. A color bar on the right side of each 

plot indicates the density of data points, with warmer colors signifying a higher concentration of 

closely matching values. Overall, these plots suggest that the BPNN model has a significantly 

higher predictive accuracy compared to the AISI analytical predictions when evaluated against 

the CUFSM calculations. The consistent high performance of the BPNN across both PcrL and 

PcrD parameters indicates its potential as a reliable predictive tool in structural engineering 

applications. 
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Figure 27 Comparisons of PcrL, PcrD, λcrL and λcrD predicted by BPNN and AISI Equation 

 

Meanwhile, Ding and Schafer (2023) have proposed a new formula (Eq. (13)) for calculating the 

critical local buckling load (PcrL) for lipped channels without punchouts. 
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where /h h b = , applicable for 1.2 22h   and / 1.5r t   

 

Figure 28 illustrates two scatter plots (Figure 28 (a) and (b)) that compare the predictions of 

critical load (PcrL) for lipped channels without punchouts using two different predictive methods 

against values calculated by the CUFSM.  

 Figure 28 (a) presents a comparison of the new analytical formula proposed by Ding and 

Schafer (2023) with the CUFSM calculated values. The linear regression equation provided 

(y=1.0469x−1632.9642), along with the coefficient of determination (R2=0.9913) and the 

Pearson correlation coefficient (R=0.9956), suggest a strong linear relationship with a high 

degree of fit to the calculated data.  

 Figure 28 (b) compares the predictions from a Back Propagation Neural Network (BPNN) 

with the CUFSM calculated values. The predictive performance of the BPNN is depicted as 

near-perfect with a R2 and R of 1.0000. The regression equation (y=1.0002x−12.6004) 
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almost perfectly matches the 1:1 line, and the MAPE is very low at 3.0492%, indicating an 

exceptional level of accuracy in the BPNN predictions.  

 

In both plots, the dashed line represents the regression fit to the data, while the solid line 

indicates the ideal 1:1 relationship where predicted values perfectly match the calculated ones. 

The color gradient represents the density of the data points, with warmer colors indicating a 

higher concentration of points. Overall, the figure suggests that both the new analytical formula 

by Ding and Schafer (2023) and the BPNN model provide accurate predictions of PcrL for lipped 

channels without punchouts, with the BPNN model demonstrating a marginally higher predictive 

accuracy as indicated by the statistical measures provided. 

 

 
Figure 28 Comparisons of PcrL, PcrD, λcrL and λcrD predicted by BPNN and New analytical 

 

6. Discussions 

In this study, the predictive performance of the ANN model, AISI S100 equation and the newly 

proposed analytical equation was quantitatively assessed using the MAPE for various structural 

parameters: PcrL, PcrD, λcrL, and λcrD. The ANN models, with architectures denoted as 4-124-2, 4-

120-4, 9-124-4, and 9-124-64-4, exhibited a progressive improvement in prediction accuracy for 

both critical load parameters (PcrL and PcrD) as the complexity of the model increased. The most 

intricate ANN model (9-124-64-4) achieved the lowest MAPE values of 3.2432% for PcrL and 

1.1052% for PcrD, indicating a superior predictive capability compared to its simpler 

counterparts.  

 
Table 1 MAPE of ANN model and Analytical Equation (%) 

Predictive model PcrL PcrD λcrL λcrD 

4-124-2 4.2793 1.0541 - - 

4-120-4 6.6815 2.5956 1.0853 1.2212 

9-124-4 5.3436 1.5533 1.0382 1.1073 

9-124-64-4 3.2432 1.1052 1.0146 1.0391 

AISI S100 equation 27.6046 27.2138 - - 

New Analytical equation 3.4808 - - - 

 *4-124-2: 4 inputs, 124 neurons in hidden layer and 2 outputs 

 

The discrepancies in the MAPE values for the λcrL and λcrD were minimal across different ANN 

models, with all values being relatively low, indicating high precision in the prediction of these 
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parameters. It is noteworthy that the half-wavelength predictions did not exhibit as substantial a 

variation with model complexity as the critical load predictions, which may be attributed to the 

inherent properties of the half wave length that are less sensitive to the modeling approach.  

 

The AISI predictions yielded the highest MAPE values for both critical load parameters, which 

underscores the potential limitations of conventional methods in capturing the complex behavior 

of lipped channels without punchouts. The data unequivocally supports the adoption of the new 

analytical formula and the ANN approach, particularly the most complex model, in predicting 

the critical load capacities with greater accuracy. Compared to the new analytical equation, the 

Artificial Neural Network (ANN) models developed in this study demonstrate superior 

predictive accuracy and robustness. Furthermore, they possess the capability to simultaneously 

predict additional structural parameters with high precision. This underlines the efficacy of ANN 

methodologies in capturing complex relationships within the data, which may not be fully 

represented by traditional analytical equations. 

 

These findings have important implications for the design and analysis of cold-formed steel 

structures, where predictive accuracy is paramount. The new analytical formula offers a 

simplified yet effective alternative to computational methods, while the ANN models provide a 

robust tool for capturing non-linear relationships in structural behavior. Future research should 

aim to explore the integration of ANN models into design software to facilitate their use in 

engineering practice. 

 

7. Conclusions 

In this study, a comprehensive dataset comprising 260,000 different cross-sectional parameters 

of cold-formed steel structures, including PcrL, PcrD, λcrL, and λcrD, was calculated and 

subdivided into training, validation, and test sets. The training set was employed to adjust the 

weights and biases within the neural network model, the validation set to monitor the model’s 

generalization error, and the test set to evaluate the model’s performance on unseen data. A total 

of 180 neural network models with varying hyperparameters were constructed, with the optimal 

hyperparameters identified through random grid search. To counter the influence of random 

initial weights and biases on loss function minimization, the models underwent ten training 

iterations under the selected hyperparameters. The findings demonstrate that a neural network 

architecture with two hidden layers yielded the most precise fitting results, indicating a 

substantial improvement over traditional AISI analytical equations. This suggests a promising 

direction for design practices in the industry, advocating for more efficient, data-driven 

methodologies that accommodate the complexities of different structural scenarios. However, it 

is important to acknowledge that while the two-layer hidden neural network models predict 

structural parameters with high accuracy, the computational cost, particularly when employing 

the Levenberg-Marquardt (L-M) algorithm, is substantial. The average duration to train a model 

once was approximately 65 hours. Additionally, the use of approximate Hessian matrices 

precluded the exploitation of GPU acceleration, unlike gradient descent methods. Therefore, 

future research should seek to explore a training algorithm that strikes a balance between 

predictive accuracy and computational efficiency, potentially harnessing the power of parallel 

processing to reduce training times while maintaining or enhancing the predictive capabilities of 

the models. 
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