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Abstract 

With the usage of high-strength steel structures, system instability has become an essential aspect 

of stability design. In this context, the published research work gravitates toward the nonlinear 

stability analysis of 3D steel frames. The advanced analysis-based design procedures, as per 

ANSI/AISC-360, allow the designers to utilize the system's total capacity by directly modeling the 

effect of imperfections and the spread of inelasticity within the context of a second-order analysis. 

Hence, a 3D second-order frame analysis must be accurate enough to capture the overall system 

behavior without excluding any impending failure modes. The present paper develops a novel 

Total Lagrangian three-dimensional beam element formulation based on the N1-N2 formalism of 

Mallet & Marcal. Kirchhoff's constraints are enforced in the variational formulation after 

generating the fundamental kinematic relations of the three-dimensional beam element. The non-

vectorial rotations are parameterized using Bryant angles, and the holonomic constraints on beam 

configuration are enforced. The resulting equations are cast into finite element formulations to 

develop a novel three-dimensional beam element. Using the developed formulation, a detailed 

parametric study has been carried out on the stability design provisions of the ANSI/AISC-360 

code, and a comparison is made over the conventional stability design using effective length. Two 

three-dimensional steel frame benchmark problems are chosen to investigate the system stability. 

The first example is a three-dimensional two-bay-two-story frame in which, depending on the 

direction of notional loads, the bending moment demand of columns gets resolved into major and 

minor axes’ demands. Usually, notional loads are applied in the direction that provides the greatest 

destabilizing effect. It is shown that the possible chance of a minor axis demand could become 

potentially troublesome in the design. Since the problem is a regular frame, the designer may tend 

to apply notional loads in the direction of applied lateral loads alone, but an additional minor axis 

demand resulting from the twist might not be captured in the analysis. The second benchmark 

problem is a one-bay, two-story frame subjected to gravity and lateral loads in two orthogonal 

directions. It could be shown that instead of doing two separate DAM analyses for each orthogonal 

direction, a single DAM analysis would suffice in which the notional loads are applied in the 

direction of the resultant lateral loads at each level. This is in accordance with the guidelines 

mentioned in ANSI/AISC 360-16. From both the frame problems, it could be concluded that DAM 

gives accurate results and a realistic picture of force distribution with considerably less effort for 

the stability design of steel frames.   
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1. Introduction 

Design methodologies for steel frames must comprehensively account for the nonlinearity in 

mechanical response inherent in steel structures due to the second-order effects, initial 

imperfections, and spread of inelasticity. In the Effective Length Method (ELM), this nonlinearity 

is accounted for by determining effective length factors (K), that are conceptualized based on the 

elastic stability theory. These factors, coupled with empirical column curves accounting for the 

effect of geometric imperfections, spread of inelasticity, and residual stresses, are used to assess a 

beam column axial compressive strength (Pu). Application of ELM becomes tedious for complex 

geometries because of the need for buckling analysis to identify effective length factors. Thus, the 

major design philosophies for steel structural systems underwent rapid change by focusing on 

reducing the design effort. By introducing advanced analysis methods, designers have migrated 

from a member-based design to a system stability-based design. This also avoids determining 

effective length factors and using empirical column curves during design. The effect of 

imperfections, the spread of inelasticity, etc., which used to be accounted for by empirical column 

curves to determine the member resistance, can be included in the analysis directly. 

 

In the Direct Analysis Method (DAM), the effect of imperfections and stiffness reduction is moved 

from the resistance side to the analysis side using notional loads and stiffness reduction factors. 

The design procedure gets exceedingly simplified as it directly identifies the effect of residual 

stresses, initial imperfections, and spread of inelasticity more consistently in the analysis (Dierlein 

G 2003; Ingkiriwang and Far 2018; Shankar Nair and Nair 2007; Surovek and Ziemian 2005; 

Surovek-Maleck et al. 2004a; b)  But, the level of accuracy needed for frame analysis may 

sometimes override the advantages offered by DAM. Before using DAM to design a topology, one 

should be confident about the advanced analysis tool's capabilities to assess the force distribution 

under applied loads.  

 

While AISC 360-2016 (ANSI/AISC 360 2016) prescribes that the analysis tool used for DAM 

must consider all flexural, shear, and axial deformations, it also states that the user can omit certain 

deformations according to one's engineering judgment regarding the effect these deformations 

might have on the overall system stability. For example, the shear deformations of a low-rise rise 

moment frame could be neglected, but the same might not be valid if the elements are stocky and 

the members are deep with short spans. Most of the modern commercial structural analysis 

programs can handle second-order effects accurately. But, before relying on an analysis tool, the 

designer using DAM should be confident about the analysis's capabilities (the included features 

and, more importantly, the excluded ones). Benchmark problems are necessary as a first-level 

check to determine whether an analysis tool is sufficient for DAM. The benchmark problems 

reveal whether different second-order effects are included in the analysis. Structures usually 

proposed as benchmark problems exhibit significant second-order effects. There are several 

references in the literature regarding the development of benchmark problems for use in stability 

design. These include moment frames, braced frames, gable frames, unsymmetric moment frames, 

unsymmetric braced frames, etc. (Chen and Toma 1994; Surovek and White 2001; Ziemian and 

Ziemian 2021a; b) Most of the benchmark problems proposed in the literature are in two 

dimensions. They can be used to assess the in-plane stability of frames. Sometimes, three-

dimensional structures are approximated using two-dimensional benchmark problems. When the 

geometry of the structure itself necessitates a space frame analysis, then 3D benchmark problems 

are essential (Surovek et al. 2009; Teh 2001, 2004; Ziemian et al. 2018; Ziemian and Abreu 2018). 
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Even if the frame is planar, certain situations warrant using a 3D analysis tool to predict the failure 

load of the frame in out-of-plane buckling (Kim et al. 2006; Wongkaew and Chen 2002). The 

member demands predicted by advanced analysis and the capacities based on a frame with applied 

notional loads and modified stiffnesses form the interaction equation in ANSI/AISC 360-16 for 

doubly symmetric beam-column members under uniaxial compression and biaxial bending, given 

by 
𝑃𝑢

2𝜑𝑃𝑛
+

𝑀𝑢𝑥

𝜑𝑀𝑛𝑥
+

𝑀𝑢𝑦

𝜑𝑀𝑛𝑦
≤ 1.0,

𝑃𝑢

𝜑𝑃𝑛
< 0.2 

𝑃𝑢

𝜑𝑃𝑛
+

8

9
(

𝑀𝑢𝑥

𝜑𝑀𝑛𝑥
+

𝑀𝑢𝑦

𝜑𝑀𝑛𝑦
) ≤ 1.0,

𝑃𝑢

𝜑𝑃𝑛
≥ 0.2 

(1a) 

 

(1b) 

Hence, it is imperative that numerically accurate three-dimensional beam formulations are 

essential to have a three-dimensional stability design. 

 

2. A novel three-dimensional Euler Bernoulli Beam Element 

In this section, the kinematics of a spatial Euler-Bernoulli beam model is discussed, which is 

mainly rooted in the following assumptions: 

• The cross-section of the beam remains rigid. 

• The cross-section of the beam remains perpendicular to the centroidal axis of the beam 

during deformation.  

The implications of the above two assumptions in describing the beam axis and the orientation of 

the beam cross-section during deformation are explained in subsequent sections.   

 

2.1 Description of beam configurations 

The beam configuration described by the centroidal axis is parameterized using the variable 's,' 

which is the arc length of the curve. Let X, Y, and Z be a fixed cartesian frame, where X(s) denotes 

the axis normal to the cross-section. 

 
Figure 1: The Total Lagrangian kinematic framework 
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Any arbitrary point P on the undeformed beam configuration is indicated as: 

𝑟0(𝑠, 𝑦, 𝑧) = 𝑟0(𝑠, 0,0) + 𝑅0
𝑇(𝑠) {

0
𝑦
𝑧

} − 𝐼 {
0
𝑌
𝑍

} 

(2) 

The term 𝑅0(𝑠) defines the orientation of the cross-section in its undeformed configuration. 

A local frame (𝑖𝑥, 𝑖𝑦, 𝑖𝑧)  is introduced to define the orientation of the cross-section in the 

undeformed configuration. Similarly, in the deformed reference configuration, the centroidal axis 

is described as: 

𝑟(𝑠, 𝑦, 𝑧) = 𝑟(𝑠, 0,0) + 𝑅(𝑠) {
0
𝑦
𝑧

} − 𝐼 {
0
𝑌
𝑍

} 

 

(3) 

 where 𝑅(𝑠) is defined using the orthonormal local frame given by (𝑖1, 𝑖2, 𝑖3). The displacement 

of the centerline is given by: 

𝑟 = 𝑟0⃗⃗⃗⃗ +  𝑑  

𝑑 = 𝑟 − 𝑟0 
 

(4a) 

(4b) 

𝑅0(𝑠) and 𝑅(𝑠) describe the orientation of the local frames with respect to the global cartesian 

coordinate system. 

{
𝑖𝑎

𝑖𝑏

𝑖𝑐

} = [𝑅0(𝑠)] {
𝑋
𝑌
𝑍

},    {
𝑖1

𝑖2

𝑖3

} = [𝑅𝑓(𝑠)] {
𝑖𝑎

𝑖𝑏

𝑖𝑐

} 

(5) 

{
𝑖1

𝑖2

𝑖3

} = [𝑅(𝑠)] {
𝑋
𝑌
𝑍

}, where [𝑅] = [𝑅𝑓][𝑅0] 

(6) 

  

Thus, the deformed configuration is completely characterized by 𝑟(𝑠) and 𝑅(𝑠). 

 

2.2 Kirchoff's Constraint  

For highly slender beams, the shear strains can be assumed to vanish, i.e., during deformation, the 

plane cross-section remains normal to the centroidal axis. This kinematic constraint of a 3D 

deformable body helps decide the local frame orientation at each cross-section. If the tangent 

vector of the deformed centroidal axis 𝑟(𝑠) is given by 𝑡(𝑠) = 𝑟′(𝑠), then the local base vectors 

𝑖2 and 𝑖3 will be perpendicular to 𝑡(𝑠). 

𝑖2̂. 𝑡(𝑠) = 0𝑖3̂. 𝑡(𝑠) = 0; 𝑖1̂ =
𝑡(𝑠)

‖𝑡(𝑠)‖
; 

(7) 

Thus, the beam's cross-section provides a natural way for orienting the local orthonormal frames. 

Directions of 𝑖2 and 𝑖3 may be chosen as the directions of principal moment of inertia of the cross-

section. Kirchoff's constraint can be strongly or weakly enforced in the variational formulation.   

 

2.3 Rotation Parameterization using Bryant Angles 

The rotation matrix defines the orientation of a local frame, expressed in terms of suitable sets of 

coordinates such as Euler angles, Bryant angles, Quaternions, Cartan frames, etc. A spatial rotation 

can be defined as a series of rotations about the axes of an orthonormal frame. In other words, the 

rotation matrices can be expressed as the product of three matrices representing three successive 



 5 

rotations. Several definitions are available to define a spatial rotation depending on the choice of 

rotation axes for three consecutive rotations.  

 

In this paper, Bryant angles are used to parameterize a spatial rotation. In this case, the {𝑖𝑎 𝑖𝑏 𝑖𝑐}𝑇 

frame is rotated three times to align the axes to {𝑖1 𝑖2 𝑖3}𝑇 . The first rotation 𝛼  is carried out 

counter-clockwise about 𝑖𝑎 axis. The resulting coordinate system is defined as 𝑖1
′′ 𝑖2

′′ 𝑖3
′  systems. 

Then, the local frame is rotated by 𝛽 about  𝑖2
′′ axis to achieve 𝑖1

′  𝑖2
′  𝑖3 system. Finally, the frame is 

rotated by 𝜙 about 𝑖3 to achieve 𝑖1 𝑖2 𝑖3. (Refer Figure 2). 

 

 
Figure 2: Different stages of rotation (a) Rotation through α about ia (b) Rotation through β about i2'' (c) 

Rotation through ϕ about i3 

 

{

𝑖1
′′

𝑖2
′′

𝑖3
′

} = [𝑅𝛼] {
𝑖𝑎

𝑖𝑏

𝑖𝑐

} ;  {
𝑖1

′

𝑖2
′

𝑖3

} = [𝑅𝛽] {

𝑖1
′′

𝑖2
′′

𝑖3
′

} ; {
𝑖1

𝑖2

𝑖3

} = [𝑅𝜙] {
𝑖1

′

𝑖2
′

𝑖3

} 

∴ {
𝑖1

𝑖2

𝑖3

} = [𝑅𝜙][𝑅𝛽][𝑅𝛼] {
𝑖𝑎

𝑖𝑏

𝑖𝑐

} = [𝑅𝑓] {
𝑖𝑎

𝑖𝑏

𝑖𝑐

} 

[𝑅𝛼] = [
1
0
0

 
0

cos 𝛼
sin 𝛼

 
0

− sin 𝛼 
cos 𝛼

] ; [𝑅𝛽] = [
cos 𝛽

0
− sin 𝛽

 
0
1
0

 
sin 𝛽

0
𝑐𝑜𝑠𝛽

] ; [𝑅𝜙] = [
cos 𝜙 
sin 𝜙

0

 
−sin 𝜙
cot 𝜙

0

 
0
0
1

] 

 

(8a) 

 

(8b) 

 

(8c) 

The rotation matrix associated with Bryant angles is highly nonlinear. [𝑅𝑓] is singular when 

cos 𝛽 = 0.  The singularity problem is an inherent problem associated with spatial rotations 

described using three parameters.  

2.4 Enforcing the holonomic constraints on beam configuration 

The deformation of a nonlinear 3D Euler-Bernoulli beam is described using four independent 

coordinates (𝑢, 𝑣, 𝑤, 𝜙) . In Figure 3, the fixed Cartesian frame xyz is attached to the beam 

support. 𝑖𝑎, 𝑖𝑏 , 𝑖𝑐 represent the cross-sectional frame before deformation and 𝑖1 𝑖2 𝑖3 represent the 

cross-sectional frame after deformation. 



 6 

 

Figure 3: The deformed shape of the configurations during Bryant angle rotations 

 

Figure 4: The direction cosines of Bryant angles in terms of displacements 

The local frame of the undeformed beam is rotated by 𝛼 about the axis 𝑖𝑐. The new orientation is 

denoted by (𝑖1
′ , 𝑖2

′ , 𝑖𝑐). 

sin 𝛼 =
Δ𝑣

√(Δs + Δu)2 + Δ𝑣2
 ;  cos 𝛼 =

Δs + Δu

√(Δs + Δu)2 + Δ𝑣2
 

 

(9) 

Then, the local frame is rotated by 𝛽 about 𝑖2
′  axis, to form (𝑖1, 𝑖2

′ , 𝑖3
′ ). 

sin 𝛼 =
Δ𝑤

√(Δs + Δu)2 + (Δ𝑣)2 + (Δ𝑤)2
   

cos 𝛼 =
√(Δs + Δu)2 + (Δ𝑣)2

√(Δs + Δu)2 + (Δ𝑣)2 + (Δ𝑤)2
 

(10) 

For lim Δs
 

→ 0, 

tan 𝛼 = lim
Δ𝑠→0

[
Δ𝑣

Δ𝑠 + Δ𝑢
] = lim

Δ𝑠→0
[
Δ𝑣/Δ𝑠

1 +
Δ𝑢

Δ𝑠

] =
𝑣′

(1 + 𝑢′)
 

tan 𝛽 = lim
Δ𝑠→0

[
Δ𝑤

√(Δs + Δu)2 + (Δ𝑣)2
] =

𝑤′

√(1 + 𝑢′)2 + 𝑣′2
 

 

(11) 



 7 

Then, the local frame is rotated by 𝜙 about 𝑖1 axis to form (𝑖1, 𝑖2, 𝑖3). 𝜙 indicates the torsion of the 

beam axis, whereas 𝛼 and 𝛽 are the flexural bending deformations in space. The elastic rotation 

matrix [𝑅𝑓(𝑠)] is given by: 

[𝑅𝑓] = [
1
0
0

 
0

cos 𝜙
−𝑠𝑖𝑛𝜙

 
0

𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙

] [𝑅𝛼𝛽] = [
1
0
0

 
0

cos 𝜙
−𝑠𝑖𝑛𝜙

 
0

𝑠𝑖𝑛𝜙
𝑐𝑜𝑠𝜙

] [
cos 𝛽

0
sin 𝛽

 
0
1
0

 
− sin 𝛽

0
𝑐𝑜𝑠𝛽

] [
cos 𝛼 

− sin 𝛼
0

 
sin 𝛼
cot 𝛼

0
 
0
0
1

] 

 

(12) 

[𝑅𝛼𝛽]  is a function of the displacement gradients. Deformed and undeformed configurations of a 

nonlinear spatial Euler-Bernoulli beam is described by [𝑅𝑓(𝑠)]. The axial strain of the centroidal 

axis is given by: 

𝑒 = √(1 + 𝑢′)2 + 𝑤′2 + 𝑣′2 

 

(13) 

The displacement field is given by: 

𝑑(𝑠, 𝑦, 𝑧) = 𝑑(𝑠, 0,0) + [[𝑅𝑓]
𝑇

− 𝐼] {
0
𝑦
𝑧

} 

{

𝑢(𝑠, 𝑦, 𝑧)
𝑣(𝑠, 𝑦, 𝑧)
𝑤(𝑠, 𝑦, 𝑧)

} = {

𝑢0

𝑣0

𝑤0

} + ([𝑅𝑓]
𝑇

− [𝐼]) {
0
𝑦
𝑧

} 

 

(14) 

 

2.5 Green-Lagrangian Strain Measures 

We confine our study to geometrically nonlinear behavior, with the material behaving as linear 

elastic, thus displaying small strains but finite displacements and rotations. Green-Lagrangian 

strain tensor is used in this formulation. 

[𝜖] = [𝜖𝑖𝑗] = [

𝜖11 𝜖12 𝜖13

𝜖21 𝜖22 𝜖23

𝜖31 𝜖32 𝜖33

] 

𝜖𝑖𝑗 =
1

2
[
𝜕𝑑𝑖

𝜕𝑥𝑗
+

𝜕𝑑𝑗

𝜕𝑥𝑖
+

𝜕𝑑𝑖𝑚

𝜕𝑥𝑖
+

𝜕𝑑𝑚

𝜕𝑥𝑗
] 

 

(15) 

The individual terms can be written by expanding the tensor. The stress-strain relationship 

governed by Hooke's law is given by: 

𝜎𝑖𝑗 = {
𝐸𝜖𝑖𝑗  , for 𝑖 = 𝑗

2𝐺𝜖𝑖𝑗 , for 𝑖 ≠ 𝑗
} 

(16) 

The variation of strain energy is given by: 

𝛿𝑈 = ∫[𝜎11𝛿𝜖11 + 𝜎22𝛿𝜖22 + 𝜎33𝛿𝜖33 + 2𝜎12𝛿𝜖12 + 2𝜎13𝛿𝜖13 + 2𝜎23𝛿𝜖23]  𝑑𝑉
𝑣

 
(17) 
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The strain measure 𝜖𝑖𝑗 and corresponding stress measure 𝜎𝑖𝑗 are functions of 𝑢′, 𝑣′, 𝑤′, and 𝜙. The 

strain energy equation can be reformulated to form the secant stiffness matrices of different order 

in a staged fashion using the N1-N2 formulation of Mallet & Marcal (1968) and Rajasekharan and 

Murray (1973). 

2.6 Mallet and Marcal - N1-N2 Formulation 

If {𝑞} represents the nodal displacement vector of a system with finite degrees of freedom, then 

the strain-displacement relation is given by: 

{𝜖𝑖} = 𝑓𝑖({𝑞}) (18) 

𝑓𝑖 indicates the dependence of strain measures {𝜖𝑖} on the nodal displacement {𝑞}. If the virtual 

displacements from the equilibrium position are given by {𝛿𝑞} , then the variation in strain 

components implied by virtual displacements are given by: 

𝛿𝜖𝑖 =  
𝜕𝑓𝑖

𝜕𝑞𝑘
𝛿𝑞𝑘 

(19) 

The principle of virtual work is given by: ∫ 𝛿𝜖𝑖𝜎𝑖𝑑𝑉 − 𝛿𝑞𝑘𝑃𝑘 = 0
𝑣

 (20) 

where, 𝑃𝑘 = generalized applied load associated with the direction of 𝑞𝑘. For a linearly elastic 

material 

∫
𝜕𝑓𝑖

𝜕𝑞𝑘
𝛿𝑞𝑘 𝐸𝑖𝑗  𝑓𝑗 𝑑𝑉 = 𝛿𝑞𝑘𝑃𝑘

𝑣

 

𝛿𝑞𝑘 (∫
𝜕𝑓𝑖

𝜕𝑞𝑘
 𝐸𝑖𝑗  𝑓𝑗 𝑑𝑉

𝑣

) = 𝛿𝑞𝑘𝑃𝑘 

 

(21) 

In the presence of a non-trivial set of virtual displacements, 

∫
𝜕𝑓𝑖

𝜕𝑞𝑘
 𝐸𝑖𝑗  𝑓𝑗 𝑑𝑉

𝑣

= 𝑃𝑘 

𝜕

𝜕𝑞𝑘
∫

1

2
 𝐸𝑖𝑗  𝑓𝑖𝑓𝑗 𝑑𝑉

𝑣

= 𝑃𝑘 

 

(22) 

 

The strain energy functional of the beam is given by: 

𝑈 = ∫
1

2
𝐸𝑖𝑗𝑓𝑖𝑓𝑗𝑑𝑉

𝑣

 
(23) 

The transcendental terms of strain energy can be expanded in a polynomial form that is amenable 

to developing secant stiffness matrices. Using Koiter's concept of expressing strain energy as a 

series: 

𝑈 = 𝑈2 + 𝑈3 + ⋯ + 𝑈𝑛 + ⋯ (24) 

where, 𝑈2 represents the quadratic terms of strain energy related to the elastic stiffness matrix [𝐾], 
𝑈3 represents cubic terms that constitute the first-order displacement matrix [𝑁1], 𝑈4 represents 
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the quartic terms related to second order displacement matrix [𝑁2], and so on. Thus, 𝑈𝑛 represents 

the terms in strain energy expression of degree' n', which will finally constitute (n-2)th order 

displacement matrix [Nn-2]. The total potential energy is given by: 

Π = U − {p}T{𝑞} (25) 

Applying the necessary condition 
∂Π

𝜕𝑃𝑖
= 0, and depending on the order of dependence in terms if 

𝑈2, 𝑈3, 𝑈4, … on 𝑃𝑖, the equilibrium equation can be written as: 

[𝐾]{𝑝} +
1

2
[𝑁1]{𝑝} +

1

3
[𝑁2]{𝑝} +

1

4
[𝑁3]{𝑝} + ⋯ = {𝑞} 

(26) 

Expanding using the Taylor series, the tangent stiffness relations can be written as, 

 
[𝑘]{Δ𝑝} + [𝑁1]{Δ𝑝} + [𝑁2]{Δ𝑝} + [𝑁3]{Δ𝑝} + ⋯ = {Δ𝑞} (27) 

To obtain a general form of secant matrices, irrespective of the discretization of domain and choice 

of trial functions, the [𝑁1] − [𝑁2] method may be applied in a staged manner. If {𝑔} represents an 

array of displacement gradients that appear in strain-displacement relations, then: 

 

𝑈 = ∫{𝑔}𝑇 [
0!

2!
[𝑘̂] +

1!

3!
[𝑁1̂] +

2!

4!
[𝑁2̂] + ⋯ ] {𝑔} 𝑑𝑉

𝑣

  
(28) 

 

After element discretization, the displacement gradients {𝑔} are represented using polynomials in 

terms of element degrees of freedom {𝛿} 

 

{𝑔} = [Γgδ]{𝛿} (29) 

The element degrees of freedom can be completely transformed into system degrees of freedom. 

{𝛿} = [Γδq]{𝑞} (30) 

2.7 A novel three-dimensional beam element 

The proposed beam element for the 3D nonlinear Euler-Bernoulli beam uses the linear and cubic 

Hermitian interpolation functions for 𝑢, 𝑣, 𝑤, and 𝜙 . 
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Figure 5: Three-dimensional beam element 

{𝑔}𝑇 = {𝑢′, 𝑣′, 𝑣′′, 𝑤′, 𝑤′′, 𝜙, 𝜙′, 𝜙′′} 

{𝑞}𝑇 = {𝑢1, 𝑣1, 𝑤1, 𝜙1, 𝜃𝑦1, 𝜃𝑧1, 𝑢2, 𝑣2, 𝑤2, 𝜙2, 𝜃𝑦2, 𝜃𝑧2}
𝑇
 

 

(31) 

The linear interpolation functions are given by: - 

𝑁1 = 1 −
𝑥

𝐿
,  𝑁2 =

𝑥

𝐿
 

 

(32) 

The cubic Hermitian beam functions are used to discretize flexural degrees of freedom. It should 

be noted that the secant matrices appear repeatedly in both equilibrium and incremental equations. 

Both can be formed by simply adjusting the scalar multiples. The secant matrices can be assembled 

quickly in a computer program 'do' loop. 

3. System stability investigations on spatial steel frames 

A detailed discussion has been carried out to highlight a particular aspect of the system stability in 

each example, and comparisons are made between the stability design provisions of the 

ANSI/AISC-360 code and the conventional stability design of steel frames. 

 

3.1 Notional loads in orthogonal directions of a space frame  

In the case of sway frames, depending on the direction of lateral loads, the bending moment 

demand of columns might get resolved into major axis and minor axis flexure demands. Since 

notional loads represent the second-order effects of a frame, they shall be applied in the direction 

that provides the greatest destabilizing effect. The concept of notional loads described in AISC 

360 is generally meant for structures that support gravity loads primarily through nominally 

vertical elements. Regarding the choice of direction of notional loads in the case of a spatial frame, 

the specification directs the user in Section C2.2b (b) as follows:  

“For most building structures, the requirement regarding notional load direction may be satisfied 

as follows: for load combinations that do not include lateral loading, consider two alternative 

orthogonal directions of notional load application, in a positive and a negative sense in each of 

the two directions, in the same direction at all levels; for load combinations that include lateral 

loading, apply all notional loads in the direction of the resultant of all lateral loads in the 

combination.” 
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The present problem evaluates the above clause for a sidesway uninhibited moment resisting frame 

subjected to combined lateral and vertical loading, as shown in Figure 6. In this frame, the beam 

is also loaded in the middle and is restrained against sidesway at the ends. The frame is loaded 

such that under the set of applied loads, the frame bends in the x-direction. But, when perturbed at 

the midpoint of the beam by a very nominal load (0.07 kips), the frame sways considerably in the 

z-direction. Figure 7 compares the magnitude of deformations at node A in x- and y- y-directions 

for the given loading. When the beam is lightly loaded, the lateral deformations of the beam are 

negligible. But, as the beam gets loaded to its total capacity, lateral-torsional deformations of the 

beam result in significant movement of the frame. While analyzing the frame, even a slight 

perturbation (≈1/200 of the applied load) in the lateral direction resulted in a significant difference 

in frame behavior. It must be noted that if the frame was not loaded to its full capacity, this 

difference might not be noticeable. The lateral loading is applied in the x-direction, and gravity 

loads act in the -y direction. The columns are oriented in such a way that the columns are bent 

under lateral load in the x-direction, and buckling of columns may result in deformations in the y-

direction. The material is assumed to be linearly elastic, with the modulus of elasticity E = 29,000 

ksi, yield stress fy = 36 ksi, and ν = 0.3.  

 

Figure 6: Geometry of a three bay, two story frame 

The non-dimensionalized interaction curves and the interaction surface are shown in Figure 8. 

Column AB is oriented such that major axis flexure under the applied lateral load results in a beam-

column subjected to compression and uniaxial flexure. But, if the beam is perturbed to buckle 

laterally, the entire moment demand gets resolved into major and minor axis flexural demand. 

Column AB is subjected to uniaxial compression and biaxial flexure when the beam bends 

laterally. In the case of ELM, the loading is in the x and y directions; hence, no deformations are 

observed in the z direction.  
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Figure 7: Load v/s displacement graphs at node A in Figure 6 

Table 1: Modeling parameters for analysis of cantilever frame in Figure 6 

 
Parameter 

ELM DAM 

Model 1 Model 2 Model 3 

M
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d
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n
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r 
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y
si

s 

Stiffness reduction factor 1 0.8 0.8 

Notional loads 
No 

 

Notional 

loads in x- 

direction  

Notional loads 

in z-direction 

F
o

r 
co
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m

n
 A

B
 i

n
 F

ig
u
re

 6
 

D
et
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m

in
at

io

n
 o

f 
P

n
 ,

 M
n
x 

an
d
 M

n
y 

  

Effective length factor (K) 0.89 1 1 

Nominal compressive strength, Pn (kips) 92.9 74.5 74.5 

Member major axis flexural strength, Mnx (kip.in) 2873.5 2873.5 2873.5 

Minor axis flexural strength, Mny (kip.in) 228.9 228.9 228.9 

D
et

er
m

in
at

i

o
n

 o
f 

P
u
 ,

 

M
u
x 

 a
n

d
 M

u
y 

  

Allowable compressive force, Pu (kips) 64.48 64.41 49.71 

Allowable major axis moment, Mux (kip.in) 960.81 985.18 721.26 

Allowable minor axis moment, Muy (kip.in) - - 54.624 

 

The geometrically nonlinear analysis is conducted using the proposed beam element, and its 

capacity is predicted using Chapter C (DAM) and Appendix 7 (ELM) of ANSI/AISC 360-16. All 

the supports are assumed to be fixed. W21×44 is used for all the members. Different combinations 

of notional loads were applied on the frame, three models were studied and the Pu-Mux-Muy curves 

were plotted against the interaction surface for members under compression and biaxial flexure.   
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Figure 8: Normalized interaction surface for a member subjected to uniaxial compression and biaxial 

flexure 

The attributes of each of the frame models used for ELM and DAM and the capacities predicted 

by each model are given in Table 1. While applying DAM, as per Section C2.2b (b) of ANSI/AISC 

360-2016, using notional loads in x- the direction alone would suffice. As shown in Table 1, this 

would result in a capacity very close to ELM. But, if notional loads are applied in z-direction, then 

the capacity predicted in major axis flexure is much less than that predicted by ELM. When the 

beam-column reaches its full capacity, even a small twist can cause the total moment demand 

under applied loads to be resolved into major and minor axes. The column is heavily compressed 

in ELM and DAM with notional loads in the x-direction, and major axis bending moment-flexural 

capacity ratio is much less. In DAM with notional loads in the z-direction, the column’s capacity 
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ratios are moderate in compression, major axis, and minor axis flexure. At the same time, the beam 

has reached its full capacity in lateral-torsional buckling. In situations like this, when the column 

is not restrained against sway, the major axis demands of the I-shaped member get quickly resolved 

into significant minor axis demands. When notional loads are applied in orthogonal directions and 

studied separately, the chance of a potentially troublesome minor axis demand could be identified 

and could be taken into consideration during design. Since the frame is subjected to lateral loads 

in the x-direction alone, the user may be inclined to apply notional loads in the x-direction alone, 

as mentioned in Section C2.2b (b). While this does not significantly impact the design of regular 

frames, the user should be reminded that the additional minor axis demand resulting from twists 

could be identified only when notional loads are applied in the z-direction. 

3.2 Verification of DAM on a single-bay-two-story frame 

Figure 9 shows the geometry of a sway frame primarily subjected to gravity loads. W18×65 

sections are used for all members. The material is assumed to be linearly elastic, with E = 200 

GPa, and ν=0.3. The geometrically nonlinear analysis is conducted using the proposed beam 

element, and its capacity is predicted using Chapter C and Appendix 7 of ANSI/AISC 360-16. All 

the supports are assumed to be fixed. The loading scheme of the frame is as shown in Figure 10.  

Lateral loads are applied in both directions. The applicability of DAM and ELM on the frame is 

discussed. For ELM, the effective length factor of the column is 1.8. The capacity ratio of each 

beam column is calculated under the set of applied loads. The frame primarily fails through flexural 

buckling of the beam column. Four separate analyses are carried out, and the parameters of each 

model are tabulated in Table 2. 

 

Figure 9: Geometry of a sway frame 
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The notional loads can be applied in each of the orthogonal directions in the case of a spatial frame. 

But, as stipulated by ANSI/AISC 360-16, for load combinations that include lateral loading, all 

notional loads are to be applied in the direction of the resultant of all lateral loads in the 

combination.” Four different models are chosen for DAM. The pattern of notional loads applied 

is shown in Figure 11.  

 
Figure 10: Loading scheme 

 

Figure 11: Three different models analyzed for DAM - (a) Model 2, (b) Model 3, and (c) Model 4 
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Table 2: Modeling parameters for analysis of cantilever frame in Figure 10 

 
Parameter 

ELM DAM 

Model 1 Model 2 Model 3 Model 4 

M
o

d
el
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s 

Stiffness reduction factor 1 0.8 0.8 0.8 

Notional loads 
No 

 

Notional 

loads in x- 

direction  

Notional loads 

in the z-

direction 

Notional loads 

in both x- and 

z-direction 
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m
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n
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f 

P
n
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n
d

 M
n
  

  
  
  
  
  
  

  

(k
N

 a
n

d
 k

N
m

) 

Effective length factor (K) 1.8 1 1 1 

Nominal compressive strength,  1364.6 3431.2 3431.2 3431.2 

Member major axis flexural strength, 

Mnx  

841.1 841.1 841.1 841.1 

Minor axis flexural strength, Mny  236.4 236.4 236.4 236.4 

D
et

er
m

in
at

io
n
 

o
f 

P
u
 a

n
d
 M

u
x 

(k
N

 a
n
d
 k

N
m

) Allowable compressive force, Pu  785.8 971.0 972.5 967.2 

Allowable major axis moment, Mux  136.3 168.8 166.5 182.3 

Allowable minor axis moment, Muy 107.9 144.7 142.6 153.4 

 

When notional loads are applied in the ratio of the lateral loads in each direction, the axial 

compression capacity predicted by DAM is conservative than the other two models. Also, it could 

be observed that the model with notional loads in both directions predicts the maximum flexure 

demand out of the four models studied. The effect of lateral load and the resultant sway is 

accurately accounted for in this model using notional loads. Hence, if a frame is subjected to lateral 

loads in both the orthogonal directions, instead of applying notional loads in each direction and 

doing separate analyses for DAM, a single frame with notional loads in the direction of the 

resultant lateral forces could be applied, resulting in a significant reduction in the design effort. 

There are significant differences in the column moments between ELM and DAM for frames under 

heavy gravity loads. It is evident that ELM is more conservative than DAM. But, when flexural 

demands predicted by a design method is low, connections may also end up underdesigned, which 

would then require the minimum design criteria proposed in ELM. 

 

4. Summary and Conclusions 

The present paper addresses the system stability of 3D steel frames using a nonlinear Euler-

Bernoulli beam finite element formulated using the N1-N2 method of Mallet & Marcal formalism. 

The resulting equations are solved to trace the post-buckling paths. This method is used to 

investigate the system stability analysis and design of 3D frames undergoing large deformations. 

Chapter C of ANSI/AISC 360-2016 addresses the primary requirements for the design of structures 

for stability and permits the use of the direct analysis method (DAM) for all structures. While 

general analysis requirements stipulated by the code highlight the need for a rigorous advanced 

analysis tool in determining the required strengths of components, guidelines are given to simplify 

the analysis and design for structures that support gravity loads primarily through nominally 
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vertical columns. Two frames are analyzed, emphasizing the use of notional loads. Comparisons 

are drawn between the ultimate load capacities predicted by DAM and ELM. It could be seen that 

even when the topology and loading of the frame are symmetric, a 3D frame analysis may be 

warranted instead of a 2D frame analysis when the primary failure mode is unknown to the 

designer. The position and direction of notional loads significantly affect the accuracy of DAM. 

This paper rigorously examines the guidelines for notional loads in ANSI/AISC-360-16 using 3D 

moment-resisting frames. In DAM, when the notional loads are applied in orthogonal directions 

in combination with lateral loads, the limit states of lateral-torsional buckling and flexural-

torsional buckling should also be considered. These limit states will significantly affect the 

ultimate behavior of the frame. When a frame is subjected to lateral loads in both the orthogonal 

directions, instead of applying notional loads in each direction and doing separate analyses for 

DAM, a single frame with notional loads in the direction of the resultant lateral forces could be 

applied, resulting in a significant reduction in design effort. The greatest advantage of using DAM 

is that the second-order moments are amplified to be very close to the actual internal moment 

distribution of the frame. Thus, the members and connections are designed for higher demands. 

However, the users of DAM should be aware of the pitfalls associated with modeling geometric 

imperfections through notional loads and use their engineering judgment during the advanced 

analysis. The problems presented in this paper are chosen such that the second-order effects of the 

frame are significant, thereby tending to exaggerate the differences one would typically encounter 

while adopting the design practices mentioned in ANSI/AISC 360-16. 
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