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Abstract

The analysis of steel frames that consider second-effémts requires the solution of a nonlinear
system of equilibrium equations. Typical numerical solution tegles involve the use of a
geometric stiffness matrix and load increments to determenedtial displacements and member
forces in the frame’s deformed configuration. This papeestigates the development and
performance of a new higher-order geometric stiffnedsixrthat more closely approximates the
theoretically derived stiffness coefficients. Factors that inflaghe accuracy and efficiency of
the solution scheme are studied using two columns, two bfierads, and four unbraced frames.
A linear relationship is discovered between the amplificatiomofaand the number of load
increments that are needed to limit the relative error to oreepewhen performing a second-
order elastic analysis with a predictor-corrector solutionrsehé\ simple equation is proposed
for design purposes that uses an approximate amplificatatar faased on the elastic critical
buckling load ratio to determine the minimum number of loatements. Twenty-two benchmark
frames are used to verify the proposed design equail@tussion is provided on when the new
geometric stiffness matrix can be used to reduce the requimaber of elements and on the use
of the new linear equation to determine the required minimumbeu of load increments.

1. Introduction

The strength requirements of frames are often evaleatesidering geometric nonlinear effects,
which requires the engineer to make decisions about tjureed modeling effort and associated
computational time to achieve a desired level of accuramystéel frames modeled with beam
elements, these nonlinear effects are accounted for usgepmetric stiffness matrix and a
solution scheme that incrementally applies the load(s) to clomgbroximate the ‘exact
equilibrium of the frame in the deformed configuration. Theusacy in modeling the frame in
this configuration is dependent upon the number of elemeatitsith used to model each member
and on the number of load increments that are used tp tygpexternal load(s). Increasing the
number of elements per member and the number of loaenm@nts to improve accuracy often
comes at a cost of increased computational time since buildangs a large number of load
combinations that need to be considered. This paper psemath assesses the performance of a
new geometric stiffness matrix to potentially reduce the redquiumber of elements per member
and the required number of load increments to achievedafigg level of accuracy. The effects
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of nonlinear material behavior are not considered in thigystadhe majority of routine building
design considers only linear, elastic material behavior (ZieamdrZiemian 2021).

Assessment of the new geometric stiffness matrix is condlectéwo columns and five frames
with known ‘exact’ closed-form solutions (Galambos and $eko2008). The number of load
increments to achieve a one percent relative error isi&eal on four unbraced frames with an
initial geometric imperfection of H/500. Based on these reghkspaper uses the amplification
factor based on the second-order results compared witfirsh@rder results to explore the
minimum number of load increments needed to achieve thi$ ¢évaccuracy. To assist the
engineer in selecting the number of load increments toousegiven frame and loading condition,
the frame’s elastic buckling load factey, is used to approximate the amplification facté},
(Merchant 1954, Eurocode EN 1993-1-1 2005, and A®£D20). A single increment predictor-
corrector (SIPC) solution scheme was studied by ZiemiarZemdian (2021) as an approximate
second-order elastic analysis method for routine desigeeifand aluminum frames. Their study
of 22 benchmark frames revealed an error rangec6f0to 5.50% for frames wiila,, > 3.

All frames were modeled using the MASTANZ2 (2014) analgsiiware, which accounts for

second-order effects using an Updated Lagrangian fotimu)and for this study, the predictor-
corrector solution scheme. The software is also capalgerédrming a linear buckling analysis

(LBA) using the inverse iteration method (McGuateal. 2000). All members were modeled as
planar 6-dof line elements with elastic material behavior. Nsoklave perfect geometries when
comparing the results with the ‘exact’ solutions, and they loanvef-plumb geometries when

performing the nonlinear analyses of the four unbraedds and 22 benchmark frames.

2. New Geometric Stiffness Matrix

A nonlinear tangent stiffness matrix for a beam-column elémas developed by Ekhandeal.
(1989) using stability functions to account for the effectxaélaorce on flexural stiffness. The
explicit expressions for the stability functions of a plananbealumn are given in Egs. 1 — 5.
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Using the geometric stiffness matrix as developed by YawghcGuire (1986) for use in an
Updated Lagrangian nonlinear elastic analysis, the stability furscéippear in the global stiffness
matrix for a planar beam element as given in Eqgs. 6 — 9.
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Yang and McGuire (1986) presented simplifi@&@der expressions for the stability functions in
their geometrical stiffness matrikg] as given in Egs. 10 — 13. These equations have Upssh
extensively over the decades and are included in theesoade of MASTAN2Z2 (2014).

_. B
C1=6-75 (10)
2 2
CZ=4—% (11)
=245 (12)
377730
6 2
C4=12—% (13)

These simplified Z-order expressions begin to deviate from the ‘exact’ &sgions whep > 2
as illustrated in Fig. 1. In order to reduce this error, whintaining the simplicity and numerical



stability of a &-order polynomial expression, Egs. 14 — 17 were devdlbpsed on a nonlinear
regression analysis of data produced ugirigcrements of 0.01r ¢ = 0.999) in Egs. 2 — 5.
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3. Braced Columnsand Frames

The potential benefit of using th&-®rder polynomial expressions was studied by considering two
braced columns and two braced frames with known criticeklmg load equations (Galambos
and Surovek 2008). The columns and frames in Fig.r2 weed to determine if the number of
elements per member that are needed to accurately detehmiceatical buckling load can be
reduced by using the new expressions. Egs. 10 — 18rasely in MASTANZ2, and Egs. 14 — 17
were added to the source code. MASTANZ2 uses the ieveamtion method to determine the
minimum eigenvalue or critical load ratio (McGueeal. 2000). In this method, the geometric
stiffness matriXg s is evaluated only once and is dependent upon the magoittigeinitial input
load Rer. All structures in this study are evaluated Witk I = L = 1, unless stated otherwise.
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Figure 2: Braced columns and frames

The relative error is used to evaluate each modeled conditiagiven in Eq. 18 wher is
determined from closed-form equations (Galambos and/8k2008), and &is determined from
a 2%-Order Elastic analysis in MASTANZ2. Using the origiigland the nevKg in MASTAN2,
Column 1 in Fig. 2 hag =m in Eq. 19, and® ==? in Eq. 1.
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As given in Table 1, high relative errors are produced Rt~ 1 when using only one element
to model the column, but the new expressions give a relatioed less than one percent when
using only one element wher#= P. The old expressions give good results when two or more
elements are used, and there is ppdffect when four elements are used.

Table 1: Column 1 analysis conditions and results

Original K, New K,
P Elem/Mem ALR P, K Rel. Error| ALR P.. K Rel. Error
1 1 12.00 12.00 0.907 21.59 11.26 11.26 0.936 14.09
9.87 1 1.216 12.00 0.907 21.59 1.005 9.921 0.997 0.52
9.87 2 1.008 9.944 0.996 0.75 0.995 9.820 1.003 -0.50
9.87 4 1.001 9.875 1.000 0.05 0.997 9.844 1.001 -0.26
1 4 9.875 9.875 1.000 0.05 9.844 9.844 1.001 -0.26

Column 2 in Fig. 2 hag = 4.49341 in Eq. 20, an®l = 20.1907 in Eq. 1.

tanf — =0 (20)
As indicated in Table 2, high relative errors are produadid Mes = 1 when only one element is
used, but the new expressions give a relative error stteg one percent when using only one
element when & =~ P. The old expressions give comparable results only whanelements are
used to model the column.

Table 2: Column 2 analysis conditions and results

Original K, New K,
P Elem/Mem ALR P, K Rel. Error| ALR P, K Rel. Error
1 1 30.00 30.00 0.574 48.59 28.48 28.48 0.589 41.06
20.19 1 1.485 30.00 0.574 48.59 0.990 19.99 0.703 -0.99
20.19 2 1.025 20.71 0.690 2.58 0.998 20.15 0.700 -0.20
20.19 4 1.002 20.23 0.698 0.20 0.995 20.11 0.701 -0.40
1 4 20.23 20.23 0.698 0.20 20.11 20.11 0.701 -0.40

Frame 1 in Fig. 2 is used to study the effect of differinmn and beam stiffnesses on the
modeling results. The = 4.6, 8 and 24 conditions in Table 3 prodfice 4.2152, 4.32205 and
4.43275 in EqQ. 22, an8t = 17.7679, 18.6801 and 19.6493 in Eq. 1, respdgtive
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The new expressions give good results when usingleneeat per member withdP~ P, but four
elements per member are needed with the old expressigive tcomparable results to those with
the new expressions. As with the two columns, high relatiegseoccur with Rf = 1 when using
only one element per member.

Table 3: Frame 1 analysis conditions and results

Original K, New K,
P.s v  Elem/Mem ALR P, K Rel. Error| ALR P, K Rel. Error
1 4.6 1 25.71 25.64 0.620 44.31 24.27 2421 0.638 36.26
17.77 4.6 1 1.447 25.64 0.620 44.31 0.991 17.56 0.750 -1.17
17.77 4.6 4 1.001 17.74 0.746 -0.16 0.996 17.65 0.748 -0.66
18.68 8 1 1.464 27.27 0.602 45.99 0.990 18.44 0.732 -1.28
19.65 24 1 1.478 28.95 0.584 47.33 0.989 19.37 0.714 -1.42

Frame 2 in Fig. 2 is used to study the effect of the raurabelements per member on the relative
error. They = 2/3 condition in Table 4 givgs= 3.53992 in Eq. 24, an® = 12.5310 in Eq. 1.
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As with the two columns, high relative errors occur wigh 1 when using only one element per
member, but there is ngeReffect when four elements per member are used. Thexgressions
give a relative error of less than one percent when wsilygone element whendP= P, but two

or more elements are needed to obtain comparable erntbrgheold expressions.

Table 4: Frame 2 analysis conditions and results

Original K, New K,
Pt v Elem/Mem | ALR P, K Rel. Error| ALR P, K Rel. Error
1 0.667 1 16.24 16.24 0.780 29.61 15.24 15.24 0.805 21.63
12.53  0.667 1 1.296 16.24 0.780 29.61 1.001 12.54 0.887 0.08
12.53  0.667 2 1.009 12.64 0.884 0.88 0.996 12.48 0.889 -0.38
12.53  0.667 4 1.000 12.53 0.888 0.00 0.997 12.49 0.889 -0.28
1 0.667 4 12.53 12.53 0.888 0.00 11.89 12.49 0.889 -0.28

4. Unbraced Frames

The new 8-order polynomial expressions were also studied using thmbeaced frames with
known critical buckling load equations (Galambos and Sur@@€8) and one unbraced frame
that was analyzed with a step size of 0.001 in a secoret-etastic analysis using a predictor-
corrector solution scheme. The first three unbraced framEg). 3 were used to investigate the
Pret requirements and the number of elements per memberrthaeaded to achieve accurate
critical buckling load results. The number of load increm#raisare needed to obtain results with
a relative error of one percent or less was also stwdibdall four unbraced frames.
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Figure 3: Unbraced frames

Frame 3 in Fig. 3 is used to study the Effect and the number of elements per member on the
relative error. Ther = 2/3, 1, 2, 8 and 24 conditions in Table 5 prodgice2.5705, 2.7165, 2.9042,
3.0774 and 3.1200 in Eqg. 25, ad = 6.6075, 7.3794, 8.4343, 9.4704 and 9.7344 inlkq.

respectively.
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In Table 5 it is noticed that even with only one element perlmersnd R¢ = 1, the relative errors
are all very small when using either the old or new polynbexgaressions i g. For this unbraced
frame, with its wide range of beam and column stiffnesslitions, it is sufficient to use only one
element per member to accurately determine the critical budbkiaty

Table 5: Analysis conditions and results for Fra&8ne

Original K, New K,
P.s v  Elem/Mem ALR P, K Rel. Error| ALR P, K Rel. Error
1 0.667 1 6.635 6.635 1.220 0.42 6.603 6.603 1.223 -0.07
1 1 1 7.401 7.401 1.155 0.29 7.369 7.369 1.157 -0.14
1 2 1 8.454 8.454 1.080 0.23 8.419 8.419 1.083 -0.18
1 8 1 9.505 9.505 1.019 0.37 9.461 9.461 1.021 -0.10
1 24 1 9.776 9.776 1.005 0.43 9.729 9.729 1.007 -0.06

Numerous second-order elastic analyses were conduxtdetdrmine the minimum number of
load increments that were needed to limit the relative errarégercent or less. Frames 3, 4, and
5 were modeled with an initial geometric imperfection of H/50@ an increment size of 0.001 in
a predictor-corrector solution scheme to obtain the ‘exastilt® They = 1, 8, and 24 conditions
were used with six differerit load magnitudes for eaghcondition. The amplification factor was
evaluated for each analysis condition using Eq. 26, whgyeis the lateral displacement of the
top left node of the frame from a second-order elastitysisaandj, ;; is the displacement at the
same location from a first-order elastic analysis.

AF = (26)

As indicated in Fig. 4, a linear relationship exists betweemthenum number of load increments
that are needed to keep the relative error below one pencérthe amplification factor.
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A regression analysis of the data revealed a very stroegrlrelationship (red line? = 0.9987).
With a slope of approximately 5 agdntercept of approximately 3, Eq. 27 is proposed forgies
purposes to determine the minimum number of load incrententse in a second-order elastic
analysis with the predictor-corrector solution scheme. It coageely uses 2 for thg-intercept
because only the integer is used from the calculation resultit also ensures the relative errors
remain below one percent.

Number of Increments = 5A4F,  — 2 (27)

AF,__is the approximate amplification factor which is based on lstie buckling load ratio of

the framex,, as given in Eurocode EN 1993-1-1 (2005) and AS 420R0). The critical buckling
loadP,,. in Eq. 29 is obtained from Table 5, ahis the applied load on the frame.

1

T VI (28)
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As indicated by the dashed red line in Fig. 4, and the woreling data associated with it, the
minimum number of load increments as determined from Eguas found to produce second-
order elastic results that were within one percent of thectesesults.

Frame 4 in Fig. 3 is used to study the Effect and the number of elements per member on the
relative error. Ther = 2/3 condition in Table 6 producgs= 1.29913 in Eq. 30, and = 1.6877

in Eq. 1. As before with Frame 3, when using only onenetd per member and.P= 1, the
relative errors are very small when using either the ol@warpolynomial expressions Ky. There

is also little beneficial effect when using more elements pentree or when g~ P.

1 12y 8y /1
p (=g rart) = (p+ar) =0 %)

Table 6: Analysis conditions and results for Fraime

Original K, New K,
P.s v  Elem/Mem ALR P, K Rel. Error| ALR P, K Rel. Error
1 0.667 1 1.691 1.691 2416 0.20 1.691 1.691 2416 0.20
1.688 0.667 1 1.002 1.691 2416 0.20 0.997 1.682 2.422 -0.34
1.688 0.667 2 1.000 1.687 2419 -0.04 0.998 1.685 2.420 -0.16
1.688 0.667 4 1.000 1.687 2.419 -0.04 0.999 1.687 2.419 -0.04
1 0.667 4 1.687 1.687 2419 -0.04 1.687 1.687 2419 -0.04

As indicated in Fig. 5 with Frame 4, a linear relationship aigsts between the minimum number
of load increments and the amplification factor. A regresaitalysis of the data revealed a linear
relationship (red line,? = 0.9994) with approximately the same slopeaindercept as that given



in Fig. 4 with Frame 3. As before, Eq. 27 was foung@rmduce second-order elastic results for
Frame 4 that were within one percent of the ‘exact’ results.
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Figure 5: Number of increments vs. amplificatiootéa for Frame 4 (relative errer1%)

Frame 5 in Fig. 3 is very similar to Frame 4, the only dgfifee is the internal hinge at the top of
the middle column. This frame was used to determine if tlisahg effect on the use of Eq. 27 to
determine the minimum number of load increments and omdtueling conditions to obtain an
accurate R. They = 2 condition in Table 7 producgs= 1.11978 in Eq. 31, an8l = 1.2539 in
Eq. 1. As before with Frames 3 and 4, when using oméyelement per member, the relative errors
are very small when using either the old or new polynomigaiessions irKg. There is also little
beneficial effect when using more elements per membshen Ret~ P.

3p2 (é + 6)/) — % =0 (31)

Table 7: Analysis conditions and results for Fr&ne

Original K, New K,
P v  Elem/Mem ALR P K Rel. Error| ALR P, K Rel. Error
1 2 1 1.255 1.255 2.804 0.08 1.250 1.250 2.810 -0.32
1.254 2 1 1.001 1.255 2.804 0.08 0.997 1.250 2.810 -0.32
1.254 2 2 0.999 1.253 2.807 -0.08 0.998 1.252 2.808 -0.16
1.254 2 4 0.999 1.253 2.807 -0.08 0.999 1.253 2.807 -0.08
1 2 4 1.253 1.253 2.807 -0.08 1.253 1.253 2.807 -0.08

As indicated in Fig. 6 with Frame 5, a similar linear relationgxists between the minimum
number of load increments and the amplification factor. iiternal hinge has no effect on the
use of EqQ. 27 to determine the minimum number of loagments since it was found to produce
second-order elastic results for Frame 5 that were witherpencent of the ‘exact’ results.
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Frame 6 in Fig. 3 was developed to evaluate the effecegeokEqQ. 27 on a more complex
unbraced frame. A linear buckling analysis was conductedjMASTANZ2 on six different beam

and column stiffness configurations as given in Table 8fiQumations A, D, and F were used to
conduct second-order elastic analyses with six magnitudederhal load for each configuration.

IsaL

y =2 (32)
C~B
I,

y, =2 (33)
C™~B

Table 8: Analysis conditions and results for Fr@ne

Configuration 11 12 Per
A 2 1.352
B 8 2 1.677
C 24 2 1.768
D 0.5 1 2.406
E 1 3.160
F 12 1 3.426

As indicated in Fig. 7, Frame 6 also has a linear relatiom&typeen the minimum number of load
increments and the amplification factor. A regression anatyste data revealed a similar linear
relationship (red liner,? = 0.9991) with approximately the same slope wimtercept as those for
Frames 3, 4, and 5. As with the previous unbracedefsaiag. 27 was found to produce second-
order elastic results for Frame 6 that were within one peaféhe ‘exact’ results.
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5. Validation Study with 22 Benchmark Frames

With successful applications of Eqg. 27 in the previous sedi@n22 benchmark frames studied
by Ziemian and Ziemian (2021) were used to further testaheity of the expression to determine
the minimum number of load increments in a second-ondsti@ analysis using the predictor-
corrector solution scheme. The 22 frames of the validatiotly are given in Table 9. All of the
section properties, material properties, modeling conditiorsloaals are the same as those used
in their study. The ‘exact’ results that were obtained lrygusn incremental-iterative work control
scheme with 1,000 load increments. As indicated in Fig. 8mdar linear relationship exists
between the minimum number of load increments and the araglin factor. Eq. 27 was found
to produce results for all 22 frames that were within onegugrof the ‘exact’ results, thus
demonstrating the validity of this simple equation to accuratelyediiciently conduct second-
order analyses when designing steel frames.
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Frame Load Frame Load
No. Description Geometry Combination No. Description Geometry Combination
A 2 stories, 1 bay &
1 story, 1 bay [Ziemian 12D+ 1.6L, + - :ﬁ 12D+ 1.0L +
1 : | | d 11 3 stories 1 bay
1 SW SL+1.0W
L 030 [Schimizze 2001] U s 05L+1.0
5 Gable: 1 story, 1 bay 1.2D +0.5L, + 12 6 stories, 2 bays 12D+ 1.0L +
i [Schimizze 2001] 1LOW - [Vogel 1985] 0.5L, +1.0W
5 2 stories, 1 bay 12D+ 1.0L + 10 stories, 3 bays;
[Deierlein et al. 2002] 1.0W 0, 4. 8, 12 lean- 1.2D + 1.0L +
1l 5 ‘ 2 X
13-16 ons [Lu et al. 0.5L, +1.0W
g 1 story. 1 bay (10 lean- LB 1977; Statler et al. s ¥4
on) [Maleck 2001] i 2011] T T
1 story, 2 bays .
- e 1.2D +1.6L, + 10 stories, 5 bays 1.2D+1.0L +
5 7= ¥ 7 -
' [Mm"ezoizgm sk [ 0.5W 7 [Luetal 1977] 0.5L,+1.0W
<9 bk
] [Ma111 ;::?G;lg;“:; . 12D+ 16L+ | o 20stories, 1 bay 12D+ 1.0L +
- : ’ tal. 1977 5L, +1.0W
2006] L | 0.5W [Lu et al. 1977] 0.5L,+1.0
l.stmy. 1 bay brac.ed\ 12D + 1.6L, + 26 stories, 3 bays 12D+ 1.0L +
7  with lean-on [Martinez- .57 19 [Luetal. 1977] 0.5L. +1.0W
Garcia et al. 2006] & . K S
g
w
1 story, 1 bay braced, =
. with lean-on (minor 1.2D+ 1.6L, + 20 30 stories, 2 bays 1.2D + 1.0L +
axis) [Martinez-Garcia ¥ o - 0.5W - [Lu et al. 1977] v 0.5L,+1.0W
' ™
et al. 2006] il
D ; m bays
i | o S‘O:e?- r blagy; 12D+ 16L+ | 30 stories, 2 bays 12D+ 1.0L +
and et al. 1982; 2
0.5 tal. 1977 0.5 OwW
Ziemian et al. 1992] 1| L e 1977] Bl
2 stori 2 9
0 5 Smne.s‘) —[Zb.ay&. 12D+ L.6L + 5, 40 stories, 2 bays 12D+ 1.0L +
minor axis) [Ziemian 22
.5 . 1977 SL+1.0W
& Miller 1997] 0.5, [Lu etal. 1977] 0.5L,+1.0

Table 9: Overview of 22 benchmark frames (Ziemiadi&mian 2021)

6. Conclusions

This paper presented a new geometric stiffness matrix Withrder polynomial expressions for
the coefficients that more closely approximate the theoreticaliyedkestability functions. It was
found that the new geometric stiffness matrix gave improegalts only when the structures were
braced and whendPwas close to the critical buckling load. Under these condijtibm&as found
that only one element per member was needed to obtain excebelts, and this held true over a
wide range of beam-to-column stiffness ratios of bracauds. The critical buckling load studies
of unbraced frames revealed there was little to no adyamteusing the new"eorder expressions.

Based on the displacement results of the four unbracewérand 22 benchmark frames, a linear
relationship was discovered between the amplification factbrttae minimum number of load
increments that are needed to limit the relative error to @meept. The integer result of
5AF,,_ — 2 is proposed for design purposes to determine the mmminumber of load increments
in a second-order elastic analysis with a predictor-comresttiution scheme. Although a linear
buckling analysis is required to calculaté, , computer code can be easily written to
automatically calculatecPand the number of load increments prior to performiegttond-order
analysis. The proposed equat®#F, — 2 will save computational time when buildings have a
large number of load combinations, and the cumulative totllaaf increments is significantly
and confidently reduced when conducting all of the secoder@lastic analyses.



References

Ekhande, S.G., Selvappalam, M., Madugula, M.K.S8@). Stability functions for three-dimensional breeolumns,
Jour. of Sruct. Eng. 115 (2) 467-479.

EN 1993-1-1 (2005): Eurocode Besign of sted structures - Part 1-1: General rules and rules for buildings, CEN.

Galambos, T.V., Surovek, A.E. (2008)uctural stahility of steel: conceptsand applicationsfor structural engineers,
Wiley, New York.

McGuire, W., Gallagher, R. H., Ziemian, R. D. (2D0@atrix structural analysis, 2nd Ed., Wiley, New York.

Merchant, W. (1954). The failure load of rigid jeéd frameworks as influenced by stabilifgur. of Sruct. Eng. 32
(7) 185-190.

Standards Australia International, AS 4100 (203®el Sructures, 3rd ed.

Yang, Y.B., McGuire, W. (1986). Stiffness matrix fgeometric nonlinear analysiiur. of Struct. Eng. 112 (4) 853-
877.https://doi.org/10.1061/(ASCE)0733-9445(1986) 11358

Ziemian, C.W., Ziemian, R.D. (2021). Efficient geetmc nonlinear elastic analysis for design of sstrictures:
Benchmark studiegdpur. of Constr. Steel Res. 186 106870https://doi.org/10.1016/j.jcsr.2021.106870

Ziemian R.D., McGuire W. (2014) MASTAN2, Versiorb3.https://mastan2.com/






