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Abstract 
The objective of this paper is to report on the modeling protocols and application of high-resolution 
laser scanning in the nonlinear collapse analysis predictions of thin-walled steel tubes in flexure 
by shell finite elements. The benchmark tubes under study are motivated by fabrication and loading 
details consistent with wind turbine support towers. Two 1m diameter tubes of varying slenderness 
fabricated in a traditional can-welding procedure, and tested in flexure with heavy end platens are 
utilized as benchmarks. The fabricated specimens were laser-scanned prior to testing. Shell finite 
element simulations of pure bending of the tested tubes are conducted in both ABAQUS and 
ANSYS to investigate solver independency. Linear buckling analysis (LBA), material nonlinear 
analysis (MNA), and geometrically and materially nonlinear analysis with imperfections included 
(GMNIA) are performed. Three types of imperfections are imposed in the shell finite element 
model: first eigenmode-affine patterns, weld depression patterns, and scanned imperfections. In 
terms of material behavior, two proportional limits are considered in the GMNIA analysis to study 
the influence of material modeling on the response of tube. Simulation results are compared with 
experimental data. This research is intended to help establish (a) direct connections between 
measured imperfections, imperfection quality class, and predicted strength, and (b) clear guidance 
on the use of nonlinear collapse analysis to establish the strength of thin-walled steel tubes for use 
in creating more efficient tower designs.  
  
 
1. Introduction 
In the pursuit of sustainable and renewable energy sources, wind power has emerged as a key 
contributor. In the past few decades, the levelized cost of the energy produced by individual wind 
turbines has decreased markedly, while the size and scale of those same turbines has increased 
(Lantz et al 2019). Notably, tower heights have increased, to accommodate the ever larger swept 
areas, and to chase higher steadier wind. Wind turbine support towers are commonly thin-walled 
steel cylinders manufactured by can-welding, consisting of rolling steel plates into cylinders, 
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seam-welding them into cans, and stacking and circumferentially welding the cans to one another 
to form a section of a tower. This process inevitably introduces imperfections, which notably 
influence the structural capacity of the tower.  
 
The effect of imperfections on the structural capacity of thin-walled cylindrical shells has been 
continuously investigated by researchers over decades and consideration of imperfections is an 
integral part of their design. Eurocode 3 Part 1-6 (i.e., EC3-1-6: CEN 2007) provides the world’s 
most comprehensive provisions for the design of civil shell structures and is utilized in wind 
turbine support tower design. EC3-1-6 classifies shell structures into Class A (excellent), Class B 
(high), and Class C (normal) based on measurement of imperfection magnitudes, and this 
fabrication quality parameter is used in the stress-based design approach for strength reduction. 
EC3-1-6 also covers the utilization of more advanced computational methods in the shell design, 
including linear buckling analysis (LBA), material nonlinear analysis (MNA), and geometrically 
and materially nonlinear analysis with imperfections (GMNIA). GMNIA explicitly requires the 
introduction of imperfections, with eigenmode-affine patterns, weld depression patterns, and 
physically scanned imperfection patterns all previously considered in simulations of others (e.g., 
Rotter and Schmidt. 2013, Rotter and Teng. 1989, Mahmoud 2017). Several of the authors have 
been involved in previous studies focused on structural performance of tubes relevant to wind 
turbine support towers, including the experimental and modeling work conducted on tapered 
spirally-welded tubes subject to bending (Mahmoud et al. 2016, Mahmoud et al. 2018, Jay et al. 
2016a, Jay et al. 2016b). Sadowski et al. (2023) provided a comprehensive assessment of current 
design rules for tubes. Existing work on can-welded tubes includes studies on compression (Berry 
et al. 2000) and bending (Wang et al. 2020). The commercial software ABAQUS is the most 
commonly used finite element solver in published research on wind turbine towers (Sadowski et 
al. 2023, Sadowski and Seidel. 2023). However, existing studies rarely focus on sensitivity of the 
collapse solution to choose of software and solvers, nor applying high-resolution laser scanning in 
the simulation of nonlinear flexural buckling of thin-walled steel tubes, nor studies the effect of 
material modeling and the choice of proportional limit, all relevant to wind turbine support tower 
simulation. 
 
To address this knowledge gap, shell finite element GMNIA collapse simulations of two recently 
tested thin-walled tubes with different slenderness are conducted. Three types of geometric 
imperfections: first eigenmode-affine, weld depression, and scanned imperfections  are considered 
in the simulations. The effect of material proportional limit is also investigated by considering 
limits of 1.0 fy and 0.6 fy in the simulated material stress-strain response.  In addition, and unique 
to this study, the GMNIA simulations are performed in two different commonly used modeling 
software: ABAQUS and ANSYS. All results are compared with experiments recently conducted 
in the STRESS laboratory at Northeastern University (Lin et al. 2024).  
 
2. Geometry of the thin-walled tubes 
The geometry of a thin-walled cylinder can be characterized by diameter (D), thickness (t), and 
length (L). The modeling protocols investigated in this paper are validated against two large-scale 
flexural tests, identified as CW-158-1 and CW-315-3, from an ongoing experimental program. 
Summary information is provided in Table 1 including the D/t ratio of the two tubes, which is also 
the number aligns identified in the specimen nomenclature. Note, “CW” refers to can-welded, and 
the final number identifies nominally identical replicants in the test series. A schematic diagram 
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of the cans that comprise the thin-walled cylinder is shown in Fig. 1. Specimens are welded with 
3 “full” cans with a length of 825.5 mm and 2 “half” cans at the ends with a length of 412.75 mm. 
 

Table 1: Summary of geometry of specimens 
Specimens 𝐷(mm) 𝑡(mm) 𝐿(mm) 𝐷 𝑡⁄  
CW-158-1 1003 6.35 3302 158 
CW-315-3 1003 3.175 3302 315 

 

 
Figure 1: Schematic diagram of the thin-walled cylinder 

 
3. Experimental summary 
The experiments utilized herein are part of a larger test series being conducted by a subset of the 
authors at the STRESS lab at Northeastern University (Lin et al. 2024). Prior to testing all specimen 
geometry and imperfections are recorded using a high-resolution laser scanner. Maximum 
measured imperfections and preliminarily assigned quality class for two specimens are provided 
in Table 2. For specimen CW-158-1, out of roundness, eccentricity, and dimple imperfections for 
the weld meets the requirement of class A in EC 3-1-6, but dimple imperfections for longitudinal 
and circumferential are quality class B, so the overall specimen quality class is B. The specimen 
quality class for CW-315-3 is C. 
 
Fig. 2(a) provides a picture of the test rig and Fig. 2(b) an annotated schematic of the test rig. The 
rig applies pure moment to the ends of the cylinder through two hydraulic actuators. The primary 
actuator is contracted in displacement control, and the secondary actuator is extended in load 
control creating equal and opposite forces. The specimens are welded to substantial endplates, 
which are in turn connected to cross beams of the testing rig by bolts. The “left” cross beam is 
pinned and the “right” cross beam is pinned into a slotted hole that allows movement in the 
longitudinal direction (again ensuring no net compression or tension). Before the actual loading, a 
small amplitude load cycle is applied to estimate the frictional moment. After loading begins, the 
test is regularly stopped for laser-scanning of the compression zone of the tube. The test is 
complete when the total rotation of the two ends of the specimen reaches 2 degrees, or other limit 
states occur. The complete test series is still ongoing as of this writing. 
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Table 2: Measurements of the maximum imperfection metrics and associated quality classes (QC) in EN 1993-1-6  

Specimen 

EN 1993-1-6 Imperfections 
Out-of-roundness Eccentricity Dimple 

Spec. 
QC 𝑈!,#$% QC 𝑈&,#$% QC 

Longitudinal Circumferential Weld 
𝑈'%,#$% QC 𝑈'(,#$% QC 𝑈'),#$% QC 

CW-158-1 0.0065 A 0.0504 A 0.0061 B 0.0088 B 0.0057 A B 
CW-315-3 0.0161 C 0.2251 C 0.0134 C 0.0160 C 0.0095 B C 

 

 
Figure 2: (a) Picture of test rig; (b) Schematic diagram of test rig (Lin et al 2024) 

 
4. Finite element modeling 
4.1 Features of numerical model 
Finite element analysis of specimen CW-158-1 and CW-315-3, including LBA, MNA, and 
GMNIA, are conducted in both ABAQUS and ANSYS. Shell elements are selected for the finite 
element models, and S4R shell element is chosen in ABAQUS while SHELL 181 element is used 
in ANSYS. Mesh size of all numerical models is selected to be no larger than 0.25√𝑅𝑡 and element 
aspect ratio is set to 1:1 as recommended by Mahmoud et al. (2018). This results in a physical 
mesh with 14 mm long elements in specimen CW-158-1 and 9 mm for CW-315-3. For boundary 
conditions of the model the two ends are coupled to corresponding reference points in the end 
sections as shown in Fig. 3, utilizing MPC-beam constraints in ABAQUS, and constraint equation 
rigid (CERig) in ANSYS. Loading in the model consists of moment about the y axis. Nodal 
coordinates and boundary conditions of the reference points are shown in Table 3. Consistent with 
the test setup, at the reference points transverse displacement and torsional rotation are restrained. 
At reference point 1, longitudinal displacement is also restrained. 
 

Table 3: Nodal coordinates and boundary conditions of numerical model 
    Nodal Coordinates   Degree of Freedom 

Reference 
points 

 x 
(mm) 

y 
(mm) 

z 
(mm) 

 U1 U2 U3 UR1 UR2 UR3 

RP-1  0 0 3302  X X X   X 
RP-2   0 0 0   X X       X 
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Figure 3: Features of numerical model 

 
4.2 Material properties 
Material (𝜎, 𝜖 ) properties in the model are based on tensile coupon tests of the specimens. 
However, elastic modulus is set to 200 GPa and Poisson’s ratio to 0.3 in all models. Plasticity is 
modeled with von Mises yield criteria, associated flow, and isotropic hardening that is matched 
with true stress-strain curves measured for each specimen in both ABAQUS and ANSYS. Material 
properties for engineering yield stress, engineering ultimate stress, and engineering ultimate strain 
are shown in Table 4 and stress-strain curves for the coupon tests and selected matching curves 
are provided in Fig. 4. For the material response provided to the model two different assumptions 
are considered: one where the proportional limit is set at 1.0fy consistent with a sharp-yielding steel 
and one where it is set at 0.6fy consistent with a more gradual yielding steel. As Fig. 4 shows, the 
response assuming the lower proportional limit more precisely captures the elastic-plastic 
transition, but for strains greater than 0.5% differences are minimal. For both ABAQUS and 
ANASYS, it is assumed engineering stress and strain obtained from coupon test measurement can 
be converted into true stress and strain by the following formulas: 
 

𝜖!"#$ = log+1 + 𝜖$%&.                                                               (1) 
 

𝜎!"#$ = 𝜎$%&(1 + 𝜖$%&)                                                              (2) 
 

Table 4: Summary of material properties: Engineering Yield stress (𝑓*), Ultimate Stress (𝑓+), Ultimate Strain (𝜖+) 

Specimens 𝑓*(MPa) 𝑓+(MPa) 𝜖+ 

CW-158-1 409 480 0.157 
CW-315-3 412 488 0.179 
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Figure 4: Coupon test results for all specimens  

 
4.3 Imperfections 
Geometric imperfections are modeled assuming three possible patterns: first eigenmode-affine, 
weld depression, and scanned imperfections. For the eigenmode and weld depression 
imperfections the magnitude is associated with the three quality classes in EC3-1-6. Note, as a 
baseline, geometric and material nonlinear analysis (GMNA) for the perfect tube is also conducted 
for comparison with the GMNIA models. 
 
First eigenmode-affine patterns (See Fig. 5 (a)) are commonly recommended in numerical 
modeling, including by EC3-1-6, “unless a more unfavorable pattern is considered” (CEN 2007).  
The magnitude of first eigenmode imperfections (∆𝑤',$)*) are calculated based on a reference 
gauge length (𝑙& ) and values for dimple imperfection amplitude parameters (𝑈%*), where the 
imperfection magnitude 𝛿' = 𝑙&𝑈%*, and 𝑈%* corresponds to a specific quality class. The gauge 
length 𝑙& is assumed equal to 𝑙&+ = 4√𝑅𝑡, which represents the gauge length in the meridional 
direction (CEN 2007). Imperfection magnitudes for each specimen are shown in Table 5, and vary 
from 1.6 mm to 5.63 mm. 
 
The weld depression imperfection pattern assumes the only important imperfections exist at the 
circumferential can welds (See Fig. 5 (b)(c)) and have been shown to be critically influential in 
flexural collapses (Wang, J. et al (2020) ). For the exact pattern, the type A weld depression profile 
suggested by Rotter and Teng (1989) is employed as provided in Eq. 3: 

 
𝛿(𝑥) = 𝛿'𝑒

,,-|+,+.| 9cos 9.
/
|𝑥 − 𝑥0|> + 𝜁 sin 9

.
/
|𝑥 − 𝑥0|>>                               (3) 

 
where 𝑥0 denotes the longitudinal location of central line of weld and 𝜆 is the linear meridional 
bending half wavelength (𝜆 = 2.44√𝑅𝑡). If 𝜁 = 1, the profile is the Type A weld depression. If 
𝜁 = 0, the profile is the Type B weld depression. The magnitude of the weld depression, 𝛿', is 
calculated by considering the gauge length (𝑙&) and values for dimple imperfection amplitude 
parameters (𝑈%*), where 𝛿' = 𝑙&𝑈%*. The gauge length (𝑙&) is calculated assuming 𝑙& = 𝑙&0 =
min	(25𝑡, 500), which is the gauge length across a weld in the circumferential direction per EC3-
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1-6. Values of the weld depression imperfection magnitudes are provided in Table 5 and vary from 
0.25𝑡 (Class A) up to 0.625𝑡 (Class C).  
 
The scanned imperfections (See Fig. 6) are included in the model as imperfections by adjusting 
the radial distance of the node points to best match the closest point in the scanned data. Use of 
the closest point algorithm works well because the scanned data has a resolution of 1mm which is 
much higher than the finite element mesh node points. However, gaps exist in the scanned data 
around the weld zone due to removal of the weld bead surface from the scanned points. To address 
this a Fourier series is introduced for fitting the imperfection surface. The coordinate system of the 
tube used for the Fourier series approximation is shown in Fig. 7, where global coordinate system 
(X, Y, Z) and local coordinate system (x, y, z) are all included. For the local coordinate system, x is 
the circumferential direction (unit: rad), y is the longitudinal direction, and z is the radial direction. 
(For other symbols in Fig. 7, R denotes radius, t thickness, and l length.) The chosen series 
approximation I(x,y) is set as follows: 
 

  𝐼(𝑥, 𝑦) = K𝑎' + ∑ +𝑎1,2 𝑠𝑖𝑛(𝑖𝑥) + 𝑎3,2 𝑐𝑜𝑠(𝑖𝑥).
4
25* S ∙ U𝑏' + 𝑏*

6
7
+ ∑ 9𝑏1,8sin	(

8.6
7
)>)

85* W      (4) 
 

By expanding and substituting terms in Eq. 4, a formula with total number of 𝑛 = (2𝑝 + 1)(𝑞 +
2) terms with unknown coefficients can be obtained. The number of terms used in the left and 
right Fourier series is selected in part based on the gauge length of the tube as follows: 
 

𝑙& = min+𝑙&+ , 𝑙&9 , 𝑙&0. = min+4√𝑅𝑡,min+2.3√𝐿:𝑅𝑡/ , 𝑅. ,min(25𝑡, 500).                 (5) 
 
where the value of p and q can be calculated by 𝑝 = 2.5𝜋𝑅 𝑙&⁄ , 𝑞 = 1.5 𝐿 𝑙&⁄ . Assume we have 
scanned imperfection data at m locations (m > n), an overdetermined linear system with number 
of equations being m and number of unknown coefficients being n can be formed. To solve this 
overdetermined linear system, MATLAB is employed (i.e., operator ‘/’ is used), which provides a 
solution with minimized error. In this case, n = 4212 for specimen CW-158-1, and n = 8395 for 
specimen CW-315-3, and m = 1000000 for two specimens. Scanned imperfections with the zone 
of the weld bead filled with data generated by the fitted Fourier series are provided in Fig. 8. 
 

Table 5: Magnitude of the Maximum Imperfection Considered in the GMNIA Models for Specimens 

Specimen 

  1st Eigenmode-affine pattern Weld depression pattern 
 	∆𝑤',&01 (mm)   𝛿' (mm) 
 Imperfection classes in EC3   Imperfection classes in EC3 
  A B C    A  B C 

CW-158-1   2.25 3.61 5.63     1.59 2.54 3.97 
CW-315-3  1.60 2.55 3.99   0.79 1.27 1.98 
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Figure 5: (a) First eigenmode-affine pattern under pure bending with the location of maximum imperfection 𝛿';  

(b) specimens with scaled weld depression; (c) weld depression profile used in multiple models 
 

 
Figure 6: Scanned imperfections with removal of data around weld bead (Unit: mm) 

 

 
Figure 7: Illustration of coordinate system of tube used in Fourier series 

 
Figure 8: Scanned imperfections with area around weld bead filled with data generated by fitted Fourier series  

(Unit: mm) 
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5. Simulation results 
5.1 Linear buckling analysis 
Linear buckling analysis of the two specimens is performed in both ABAQUS and ANSYS. A 
reference moment of 1500 𝑘𝑁 ∙ 𝑚  is applied for specimen CW-158-1 and 1000 𝑘𝑁 ∙ 𝑚  for 
specimen CW-315-3. Comparison of the critical load factors predicted for the first eigenmode 
(𝛼3") are provided in Table 6. Comparison of the eigen-buckling mode shape is provided in Fig. 
9. Both in terms of eigenvalue and eigenmode ABAQUS and ANSYS results are comparable.  
 

Table 6: Comparison of critical load factor calculated by ABAQUS and ANSYS 

Specimen Input moment  
(𝑘𝑁 ∙ 𝑚) 

	𝛼2! 
(ABAQUS) 

𝑀2! 
(ABAQUS) 

𝛼2!  
(ANSYS) 

𝑀2! 
(ANSYS) 

CW-158-1 1500 5.187 7780 5.160 7740 
CW-315-3 1000 1.939 1939 1.933  1933  

 

 

 
Figure 9: Comparison of first eigenmode generated by ABAQUS and ANSYS (a) ABAQUS; (b) ANSYS 

 
5.2 Material nonlinear analysis 
Material nonlinear analysis of the two specimens is performed in ABAQUS and ANSYS. The 
measured engineering stress-strain response assuming a proportional limit of 1.0fy is converted to 
true stress-strain and the plastic strain provided as input to the models. The moment vs. total end 
rotation response is provided for the two models in Fig. 10 and the results are nearly identical. 
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Comparison of the fully material nonlinear (MNA) response to classical elastic first yield (𝑀6) 
and elastic-plastic (𝑀4) response is provided in Table 7, where: 
 

𝑀6 = 𝜋𝑟:𝑡𝑓6	                                                              (5) 
 

𝑀4 = 4𝑟:𝑡𝑓6                                                               (6) 
 
Two additional moments are also determined from the models and provided in Table 7: 𝑀4

;	and 
𝑀4
<, which provide the moment from the MNA analysis at which 5% equivalent plastic strain is 

observed. This MNA calculation allows for strain hardening and is reported at two levels: a) 5% 
surface strain, and b) 5% membrane strain. The shape factor for a thin cylindrical tube (i.e. 𝑍/𝑆 or 
𝑀4/𝑀6) is 4/𝜋 ≅ 1.27, and the addition benefits to considering strain hardening are dependent 
on the stress-strain curve with a maximum increase of 1.15 over 𝑀4 for the first specimen, but 
only 1.08 over 𝑀4	for the second. 
 

Table 7: Comparison of plastic load factor calculated with different strain assumption 

Specimen 𝑀* 
(𝑘𝑁 ∙ 𝑚) 

𝑀3  
(𝑘𝑁 ∙ 𝑚) 

	𝑀3
$  

(𝑘𝑁 ∙ 𝑚) 
𝑀3
4  

(𝑘𝑁 ∙ 𝑚) 
𝑀3
$/𝑀3 𝑀3

4/𝑀3 

CW-158-1 2052 2613 3001 3010 1.15 1.15 
CW-315-3 1034 1316 1422 1426  1.08 1.08 

a. Moment at which surface strain reaches 5% equivalent plastic strain 
b. Moment at which membrane strain reaches 5% equivalent plastic strain 

 

 
Figure 10: Comparison of Moment – rotation curve generated by ABAQUS and ANSYS for MNA  
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5.3 Geometrically and materially nonlinear analysis with imperfections included 
GMNIA collapse simulations are conducted in both ABAQUS and ANSYS for the two specimens. 
The models have the same boundary conditions, mesh, material model, and imperfection patterns 
and magnitudes. (Note the eigen imperfections are independently generated in each solver, but as 
shown before are nearly identical). Both models use thin shell elements (S4R in ABAQUS and 
SHELL 181 in ANSYS), details of the elements may differ slightly, but the mechanics are 
nominally the same. In ABAQUS the Riks solver is employed, but the arc-length is not allowed to 
increase, and the model step sizes are such that at least 100 steps occur prior to reaching peak load. 
In ANSYS the Arclength method solver is employed, and step sizes are generally set to 0.02. 
Default convergence criteria and other solution controls are employed.  
 
Results are provided for the three types of imperfections: first eigenmode-affine patterns, weld 
depression patterns, and scanned imperfections, and two choices of material proportional limit: 
1.0𝑓6 and 0.6𝑓6. Peak moments from the models are summarized in Table 8 and moment vs. total 
rotation response is provided for eigenmode imperfections in Fig. 11, weld depression 
imperfections in Fig. 12, and scanned imperfections in Fig. 13. In general, both ABAQUS and 
ANSYS provide similar results, the weld depression is a more effective imperfection pattern in 
this loading condition than eigenmode imperfections, and scanned imperfection models show great 
promise, though are not a complete panacea to the challenges of GMNIA collapse modeling. 
 

Table 8: Peak calculated moment from GMNIA simulations 

Specimen  𝑀#$%,5&65 
(𝑘𝑁 ∙ 𝑚) 

Imperfections 
type 

Proportional 
limit 

𝑀#$%,78 (𝑘𝑁 ∙ 𝑚) 

ABAQUS ANSYS 
GMNIA EC3 classes GMNIA EC3 classes 

A B C A B C 

CW-158-1 1994  
1st 

eigenmode 

1.0fy 1856  1810  1777  1822  1730  1839  
0.6fy 1747  1697  1677  1778  1766  1728  

CW-315-3 918  
1.0fy 710  704  693  716  728  758  
0.6fy 693  686  682  699  708  740  

CW-158-1 1994  
Weld 

depression 

1.0fy 2096  1984  1849  2090  1973  1850  
0.6fy 2081  1950  1796  2149  2075  1905  

CW-315-3 918  
1.0fy 844  758  664  899  821  724  
0.6fy 819  741  652  845  775  734  

CW-158-1 1994  
Scanned 

imperfections 

1.0fy 2273 2335 
0.6fy 2346 2353 

CW-315-3 918  
1.0fy 889 865 
0.6fy 837 801 
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Figure 11: Comparison of Moment – rotation curve generated by ABAQUS and ANSYS for GMNIA  

using first eigenmode imperfections 
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Figure 12: Comparison of Moment – rotation curve generated by ABAQUS and ANSYS for GMNIA  

using weld depression 
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Figure 13: Comparison of Moment – rotation curve generated by ABAQUS and ANSYS for GMNIA using scanned 

imperfections 
 
GMNIA simulations with eigenmode imperfections are in poor agreement with tested capacity. In 
addition, the eigenmode imperfections models exhibit little sensitivity to imperfection magnitude 
(i.e. quality class). In comparing the ABAQUS and ANSYS results the ABAQUS results exhibit 
greater consistency – larger imperfections always generate smaller peak moments. While 
ABAQUS and ANSYS have excellent agreement with the LBA and MNA, the GMNIA 
equilibrium paths especially for the CW-158-1 specimen with the 0.6𝑓6 proportional limit, differ 
– with ABAQUS consistently predicting softer overall response than in the ANSYS model. 
 
GMNIA simulations with weld depression imperfections show greater strength sensitivity to 
imperfection magnitude, particularly for the stockier CW-158-1 specimen. In addition, the 
simulation strengths agree more closely with the tested capacity and assumed imperfection / 
quality class. This result is consistent with the recommendations of Wang et al. (2020). As with 
the eigenmode imperfection solutions, ABAQUS peak moments again show greater numerical 
consistency than the ANSYS results. In the process of performing and comparing the results we 
observed that the ANSYS solution was particularly sensitive to the arc-length step size, 
particularly in the primarily elastic Class A imperfection CW-315-3 specimen. For the slender 
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CW-315-3 specimen ANSYS results are consistently higher in predicted strength than ABAQUS, 
in the most extreme case, 12% higher.    
 
GMNIA simulations with scanned imperfections show reasonable agreement with tested response. 
For the slender tubes (CW-315-3) the agreement is excellent in terms of strength, with an error of 
3%, as well as overall response as shown in Fig. 13. However, for the stockier tube (CW-158-1), 
the strength is 10% higher than the tested capacity and the moment-rotation response is not in good 
agreement near peak load. It is hypothesized that this model is particularly sensitive to weld 
depressions (as demonstrated in the results of Fig. 12). The method used to fill in the missing 
imperfection data at welds (customized Fourier series) does not especially account for weld 
depressions and it is hypothesized that this may be a source of error in this model. Scanning from 
the inside, or more direct use of the weld depression function fit to the available data are two 
possible solutions to remediate this lack of agreement.   
 
6. Discussion 
Utilization of GMNIA collapse analysis in the structural design of cylindrical wind turbine support 
towers holds great promise for improving efficiency and directly connecting manufacturing quality 
to reliability of installed towers. The benchmark testing utilized herein, demonstrates some of the 
challenges with developing a robust and reliable GMNIA modeling protocol, even for a tube under 
a single action. With care taken on boundary conditions, element selection, mesh, and material 
model then LBA and MNA models are shown to be robust and consistent across the most popular 
commercial finite element packages. However, even with this care extended to the modeling of 
geometric imperfections, the sensitivity of the simulation reveals sensitivities to solver 
assumptions and some disagreement between the solutions generated from ABAQUS and ANSYS 
shell finite element models. Significant work remains to explore the results across a greater body 
of benchmarks, to more fully explore the solvers, solver inputs, and convergence criteria, and 
ultimately to provide definitive modeling guidance. 
 
7. Conclusions  
Wind turbine support towers rely on thin-walled steel cylinders that are highly sensitive to 
imperfections. The tower manufacturing process utilizing “can-welding” introduces important 
geometric imperfections to the formed tube. Geometric and material nonlinear analysis with 
imperfections (GMNIA) with shell finite element models holds promise as a robust method to 
reliably predict the strength of these tubes. However, sensitivity to the assumed geometric 
imperfections, fidelity in which the material model is realized, and even the finite element package 
utilized, e.g. ABAQUS or ANSYS all have a potential role to play in the predicted response. Two 
recently conducted flexural tests on 1 m diameter steel tubes, one reasonably stocky and the other 
quite slender, which were carefully scanned for initial geometry, are utilized as benchmarks in a 
numerical study of structural response. Both ABAQUS and ANSYS models, with similar 
modeling protocols, are conducted for the tubes, and excellent agreement is shown in isolated 
linear buckling analysis and material nonlinear analysis. However, when conducting GMNIA 
collapse simulations significant sensitivity to the imperfection assumptions, and in some cases the 
solvers employed, is demonstrated. The inadequacy of using the first eigen-buckling mode as the 
imperfection pattern is demonstrated. While significant efforts were made to utilize the laser-
scanned imperfections in the models, additional work remains, as the external scans of the tubes 
do not provide critical information about weld depression imperfections, due to the presence of 
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the weld bead. In the case of the slenderest tube tested the scanned imperfection pattern did provide 
excellent results in comparison to tested response. Additional work remains to develop a robust 
set of modeling and solver protocols for GMNIA collapse modeling of wind turbine support 
towers.      
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