
Proceedings of the
Annual Stability Conference

Structural Stability Research Council
San Antonio, Texas, March 19-22, 2024

A fast, scalable shell finite element formulation
implemented with open-source software

Cristopher D. Moen1

Abstract
A shell finite element formulation framework is described as part of a new open-source software
package that aims to provide both easy of use, computational efficiency, and scalability to large
structural stability problems. The element formulation framework is generally posed to accept
details into a software object that include: the nodal degrees of freedom; the element deforma-
tion function which approximates the element deflected shape; a mapping operator that defines
the relationship between the deformation function and the nodal degrees of freedom; structural
response functions such as ODEs or energy functions that define the structural behavior; and an
equilibrium objective function. A unique part of the formulation is that functions and operators
are defined symbolically and used numerically which allows for convenient control over the me-
chanics considered in the shell element. A formulation example is provided for a classical 4 node
shell element. Next steps are discussed that include the consideration of element-to-element de-
formation compatibility, boundary conditions, loads, and the solution of deformation field as an
optimization problem.

1. Introduction
Shell element formulations in finite element analysis software used for structural stability calcu-
lations are typically derived with the same flow: stiffness matrices mapping nodal discretization
response to element behavior are derived by taking derivatives of assumed element shape functions
and substituting them into equilibrium equations. The shape functions and equilibrium equations
are ’baked in’, and the element nodal deformation results are obtained either by inversion of the
stiffness matrix or solving for the deformation vector from a system of equations. What if we
could work another way though; a way that might help position us for computational advantages
while conveniently managing the specific mechanics considered, e.g., bending, membrane, shear,
geometric nonlinearities, and large deflections.

There is a whole new world out there of powerful open-source software supporting scientific ma-
chine learning and data-driven models. These software packages solve large systems of nonlinear
equations in a flash, perform automatic differentation to find gradients, and run multi-variate op-
timization to solve for neural network coefficients that minimize an error loss function. They can
1President, RunToSolve, LLC, <cris.moen@runtosolve.com>

mailto:cris.moen@runtosolve.com


numerical integrate. They can provide symbolic manipulations of higher order equations. They
can tell you what function that will work best to match an objective function. And the solution
workflows are easily parallelizable meaning they can be applied to very (computationally) large
problems.

You might be picking up on something now. That these open-source tools are not only useful for
scientific machine learning, they are helpful to us, the structural stability community. And one
focus area that has strong potential for impact is shell finite element analysis (FEA). Shell FEA
has been used to bring clarity to many complicated thin-walled structures and systems, from metal
building frames to steel storage racks to cold-formed steel joists. However in practice, in design, in
day-to-day engineering, we don’t see that much shell FEA applied. It may be because of the addi-
tional modeling complexity compared to frame analysis (discretizing a W-shape as a line element
or shell elements are different levels of effort, for example), the slower computational speeds com-
pared to a hand calc or a frame analysis, high commercial software license costs, or the difficulty
of connecting shell FEA to our typical workflows, our calculation reports, our spreadsheets.

It is well know though that the effort of going to shell FEA has significant potential benefits. We
can accurately capture beneficial warping torsion stiffness, clarify the influence of shear center ec-
centricities for members with singly symmetric cross-sections, and directly capturing local-global
buckling interaction.

So maybe we can make these benefits outweight the costs. We can try to make a different kind of
shell FEA software package, that takes some of the heavy lifting off of the user, that is open-source
(zero cost), that can be potentially as fast as a frame analysis (e.g., SAP 2000 or RISA), and one
that has a reliable interface (API) that can be incorporated into company’s workflow. What would
a framework look like though? This is the objective of this paper, to introduce this new software
package and to work through some of these details, starting with the computational shell element
formulation.

2. Open-Source Software
The name of the new open-source software package is InstantShell.jl and it is written
to focus on 3D thin-walled structures where buckling deformation is of interest. It is written in
Julia, a scientific computing language developed at MIT known for its composability and com-
putational speed, see Bezanos et al.(2012). Julia is popular in data science and machine learning
communities. There are several package dependencies used from the Julia SciML organization at
the core of InstantShell.jl, including Symbolics.jl for handling symbolic equations
(taking derivatives for example), Optimization.jl used to solve for nodal displacements, and
HCubature.jlfor numerical integration. There are other open-source shell finite element soft-
ware packages available, including Hale et al.(2018) that the author has gained inspiration from,
and that the reader should consider as well.

The shell element formulation is presented in this paper. Coordinate transformations in 3D, bound-
ary conditions, external loading, element meshing and compatibility, and visualization will be dealt
with in future work. Some of the work has already been completed, see the InstantShell.jl
GitHub repository.

2

https://github.com/runtosolve/InstantShell.jl
https://sciml.ai/
https://github.com/JuliaSymbolics/Symbolics.jl
https://github.com/SciML/Optimization.jl
https://github.com/JuliaMath/HCubature.jl
https://github.com/runtosolve/InstantShell.jl


3. Shell Element Formulation
A shell element is comprised of some nodes and their degrees of freedom that respond in a cer-
tain way together when external stresses (loads, tractions) or (imposed) displacements are ap-
plied. The element deformed shape is defined by an approximate function, e.g. a polynomial or
a Fourier series. The element nodal deformations from external influences (stresses, loads) are
solved by substituting the deformation function transformed by a mapping operator into equations
relating deformation and response (think ODE or energy functions), and applying a physics-based
equilibrium objective function, for example conservation of energy or the principle of stationary
energy. The mapping operator is important because it defines the relationship between the defor-
mation function coefficients and the nodal deformation for each degree of freedom.

The high-level description above identifies the primitives (bolded terms) that are needed to define
a shell element formulation so that we start getting organized from a software perspective. The
primitives can then be written as a software object:

struct Shell
nodal_degrees_of_freedom::Vector{Num}
element_deformation_function::Vector{Num}
structural_response_equation::Vector{Num}
node_deformation_mapping::Vector{Matrix{Num}}
equilibrium_objective::Vector{Num}

end

Each of the primitives in the object have a type Num (special to Symbolics.jl) which allows for
equations to be explicitly written symbolically and later solved numerically. (There are similar
symbolic types and symbolic algebra packages in other languages, e.g., SymPy in Python.)

The primitives are defined as either a Vector or a Matrix to accommodate different kinds
of shell elements, for example a 4 node element or a 9 node element with multiple deformation
functions and response equations (e.g., bending, membrane, shear).

4. Example: 4 Node Shell Element
Consider the 4 node bending-deformable geometrically nonlinear shell element formulation de-
fined by Kapur and Hartz (1966) and summarized by Haskell (1970). The element has a width
of 2a and depth of 2b, thickness t, elastic modulus E, and Poisson’s ratio µ. The element has a
local x− y coordinate system centered in the element (e.g., x ranges from −a to a, y ranges from
−b to b) with the z out-of-plane axis following the right-hand rule. There are 3 nodal deformation
degrees of freedom per node 1, 2, 3, and 4:

3

https://www.sympy.org/en/index.html


rN =



δ1z
θ1x
θ1y
δ2z
θ2x
θ2y
δ3z
θ3x
θ3y
δ4z
θ4x
θ4



(1)

where δ is the deformation in the element local z direction (out-of-plane) and θ is the rotation about
the specified local axis.

The deformation function for the element is a cubic polynomial:

w = a1+a2x+a3y+a4x
2+a5xy+a6y

2+a7x
3+a8x

2y+a9xy
2+a10y

3+a11x
3y+a12xy

3 (2)

and the mapping operator A that relates nodal deformation degrees of freedom to the element
deformation function, i.e., rN = A[a1 . . . a12]

′ is:

A =



1 −a −b a2 ab b2 −a3 −a2b −b2a −b3 a3b b3a
0 1 0 −2a −b 0 3a2 2ab b2 0 −3a2b −b3

0 0 1 0 −a −2b 0 a2 2ab 3b2 −a3 −3b2a
1 −a b a2 −ab b2 −a3 a2b −b2a b3 −a3b −b3a
0 1 0 −2a b 0 3a2 −2ab b2 0 3a2b b3

0 0 1 0 −a 2b 0 a2 −2ab 3b2 −a3 −3b2a
1 a b a2 ab b2 a3 a2b b2a b3 a3b b3a
0 1 0 2a b 0 3a2 2ab b2 0 3a2b b3

0 0 1 0 a 2b 0 a2 2ab 3b2 a3 3b2a
1 a −b a2 −ab b2 a3 −a2b b2a −b3 −a3b −b3a
0 1 0 2a −b 0 3a2 −2ab b2 0 −3a2b −b3

0 0 1 0 a −2b 0 a2 −2ab 3b2 a3 3b2a



(3)

The A operator was determined here with Symbolics.jl.

The first structural response equation is the element strain energy U , see Chajes (1974) Chapter 6:

U =
E

2(1− µ2)2

∫ a

−a

∫ b

−b

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2

+ 2µ
∂2w

∂x2

∂2w

∂y2
+ 2(1− µ)

(
∂2w

∂x∂y

)]
dxdy

(4)

4



The second response equation is the external work V resulting from applied shell edge stresses σx,
σy, and τxy, see Timoshenko and Woinowsky-Krieger(1959):

V =
t

2

∫ a

−a

∫ b

−b

[
σx

(
∂w

∂x

)2

+ σy

(
∂w

∂y

)2

τxy

(
∂w

∂x∂y

)2
]
dxdy (5)

The shell element equilibrium equation is established based on the conservation of energy:

Π = U + V = 0 (6)

These are the key pieces of the shell element formulation that are entered into the Shell object
defined above.

5. Next Steps
From here, the next steps would be to define the shell domain for the structure to be studied, dis-
cretize the domain into elements, define boundary conditions, add initial geometric imperfections,
apply external forces, assemble the system equations, and solve for the free nodal deformation
degrees of freedom. There are a few ways to get to the solution. A traditional finite element ap-
proach can be followed, by deriving element local elastic and geometric stiffness matrices from
the Shell object and the energy quantities U and V , assembling the global elastic and geometric
stiffness matrices, and solving for the deformation field.

Another approach that is currently being implemented for InstantShell.jl is a potentially
more computationally efficient, where element-to-element compatibility is considered as a vector
operator and the deformation field is solved as an optimization problem using Optimization.jl.
These efforts are still a work in progress, although small problems including plates with initial im-
perfections and elastic buckling solutions have been validated.

There is also much to be learned from others, for example from Vigliotti and Auricchio (2021)
where automatic differentiation (AD) is applied to solve solid mechanics finite element problems
with elegance. And it is being shown that open-source finite element modeling can be implemented
to solve very large problems (like millions of degrees of freedom) when attention is paid to the
software design, see Verdugo (2022).

6. Conclusion
A shell finite element formulation is presented as the first steps in the development of an open-
source shell finite element analysis software package InstantShell.jl. The goals for this
new software development are to provide a general interface for defining the mechanics of interest
in the solution, to provide software that is accessible and easy to use, and to design the software
to solve large problems with high-performance computing. The formulation primitives are defined
as the nodal deformation degrees of freedom, the element deformation function, the element struc-
tural response equations, the mapping between the deformation function and the nodal degrees

5



of freedom, and the objective function that guides the solution of the finite element deformation
field. An example 4 node shell element implementation is described, and next steps are outlined
including efficient algorithms for defining element-to-element compatibility that circumvent the
traditional global stiffness matrix solutions.

References
Bezanson, J., Karpinski, S., Shah, V.B., and Edelman, A. (2012). “Julia: A fast dynamic language for technical com-

puting”. arXiv preprint arXiv:1209.5145.
Chajes, A. (1974). Principles of structural stability theory. Waveland Press.
Hale, J.S., Brunetti, M., Bordas, S.P.A., and Maurini, C. (Oct. 2018). “Simple and extensible plate and shell finite

element models through automatic code generation tools”. Computers & Structures 209, 163–181. ISSN: 0045-
7949. DOI: 10 . 1016 / j . compstruc . 2018 . 08 . 001. URL: http : / / www. sciencedirect . com / science / article / pii /
S0045794918306126.

Haskell, W. (1970). “Geometric nonlinear analysis of thin plates by finite elements”. Ph.D. thesis. University of Mas-
suchusetts.

Kapur, K.K. and Hartz, B.J. (1966). “Stability of plates using the finite element method”. Journal of the Engineering
Mechanics Division 92(2), 177–195.

Timoshenko, S. and Woinowsky-Krieger, S. (1959). Theory of Plates and Shells, Second Edition. McGraw-Hill Book
Company, Inc., New York.

Verdugo, F. and Badia, S. (July 2022). “The software design of Gridap: A Finite Element package based on the
Julia JIT compiler”. Computer Physics Communications 276, 108341. DOI: 10.1016/j.cpc.2022.108341. URL:
https://doi.org/10.1016/j.cpc.2022.108341.

Vigliotti, A. and Auricchio, F. (2021). “Automatic differentiation for solid mechanics”. Archives of Computational
Methods in Engineering 28(3), 875–895.

6

https://doi.org/10.1016/j.compstruc.2018.08.001
http://www.sciencedirect.com/science/article/pii/S0045794918306126
http://www.sciencedirect.com/science/article/pii/S0045794918306126
https://doi.org/10.1016/j.cpc.2022.108341
https://doi.org/10.1016/j.cpc.2022.108341

	Abstract
	Introduction
	Open-Source Software
	Shell Element Formulation
	Example: 4 Node Shell Element
	Next Steps
	Conclusion

