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Abstract 

The objective of this paper is to evaluate the in-plane response of steel plates when edge support 

conditions are intermittent on the unloaded edge, instead of continuous. The study is motivated by 

the expected boundary conditions for the top plate of a developed prototype all-steel modular floor 

assembly. Current AISC 360 provisions do not provide explicit guidance for local buckling in 

these conditions. A material and geometric nonlinear shell finite element modeling protocol is 

developed and validated for steel plates in ABAQUS. The protocol is applied in a parametric study 

in which support spacing and plate slenderness are systematically varied. Potential design methods 

that consider limit states of (i) buckling between supports and (ii) plate buckling are explored. A 

simplified formula for the minimum required connector spacing to develop the plate strength is 

provided. The results are intended to inform hand calculations of the floor assembly and are part 

of a larger project investigating the strength, vibration and acoustical performance of the assembly.  

 

 

1. Introduction 

Stiffness and strength of plates loaded in their plane are highly sensitive to loading and edge 

boundary conditions. Classical plate stability solutions show that an end-loaded plate with simple 

continuous supports on all four sides buckles at a stress 9.4 times higher than the same plate with 

one unloaded edge unsupported. In built-up members it is common to desire the use of intermittent 

connection between the elements as opposed to continuous connection. However, AISC 360 

(2022) provides little more than commentary guidance on this condition, leaving the engineer to 

provide continuous connection or ignore the beneficial composite behavior. Recent work on a new 

all-steel modular floor assembly has re-opened interest in the performance of large steel plates 

with intermittently connected supports. This paper develops and discusses a shell finite element 

study to address this condition. The paper first provides details on the finite element modeling of 

plates to establish appropriate element selection, element discretization, and imperfection 

magnitudes. This is followed by discussion of potential design treatments for the condition. The 

parametric study results on the intermittently supported plates are compared with the simplified 

design treatments with alternatives discussed and recommendations made.  

 
1 Graduate Research Assistant, Johns Hopkins University, <rchidam3@jhu.edu> 
2 Research Scientist, Johns Hopkins University, <torabian@jhu.edu> 
3 Professor, Johns Hopkins University, <schafer@jhu.edu> 



 2 

2. Plate Finite Element Modeling 

Prior to performing parametric analysis of compressed plates with the unloaded edges 

intermittently supported classical plate studies were performed in ABAQUS to verify the modeling 

protocol. These studies are provided here as a validation step for the later parametric analysis. 

 

2.1 Element Selection and Discretization  

Motivated by the floor plate in the prototype FastFloor modules a rectangular plate with length, 

𝑎=180 in. (4572 mm), width, 𝑏=60 in.(1524 mm), and thickness, 𝑡=0.375 in. (9.525 mm) is 

modeled in ABAQUS. The plate is modeled with isotropic material 𝐸=29000 ksi (199955 MPa), 

𝜈=0.3 and simply supported on all edges. A reference compressive load of 1 kip/in. (177 N/mm) 

is applied along the transverse edges as shown in Fig. 1.  

 
Figure 1. Loading and boundary conditions of studied plate in ABAQUS 

 

ABAQUS provides several shell elements potentially appropriate for this study: a) S4R – a 4-

noded thin plate quadrilateral element that uses linear interpolation and can be used to capture 

large strains in shells; S4R uses a reduced integration scheme to lower the computational cost and 

remove parasitic shear modes; b) S4 – a general purpose fully integrated 4-noded quadrilateral 

shell element, c) S8R – a curved, thin shell 8-noded element that uses quadratic interpolation and 

reduced integration, and d) S9R5 – a curved thin shell 9-noded quadrilateral element that includes 

the internal drilling degree of freedom in addition to the boundary nodes.  

 

If we define the number of elements along the longitudinal direction as 𝑛𝑎 and the number of 

elements along the transverse direction as 𝑛𝑏, then the element length on the loaded edge is 𝑏/𝑛𝑏, 

and on the unloaded edge 𝑎/𝑛𝑎 , while the element aspect ratio is (𝑎/𝑛𝑎)/(𝑛/𝑛𝑏). The shell 

elements, mesh (edge) discretization, and element aspect ratios are varied, and linear bifurcation 

analysis (LBA) is performed in ABAQUS to investigate the elastic local buckling of the plate. 

Conclusions are drawn on the appropriate element discretization and shell element based on the 

convergence to the critical buckling force. The results from ABAQUS are validated by comparing 

them to the analytical solution for critical plate buckling (e.g., Timoshenko et al., 1989): 
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where, 𝐷 = 𝐸𝑡3/12(1 − 𝜈2) is the plate rigidity and 𝑚 is the number of buckling waves in the 

longitudinal direction. For our studied plate 𝑁𝑐𝑟 =1.53 kip/in. (271 N/mm) and 𝑚=3 for the first 

mode. Results of the element selection and discretization study are provided in Fig. 2.  

 

 

 
 

(a) First mode, analytical 𝐹𝑐𝑟 = 1.53 kip/in. (b) aspect ratio model sensitivity 

  
(c) unloaded edge mesh sensitivity (d) loaded edge mesh sensitivity 

Figure 2. Element selection and discretization study on plate buckling in ABAQUS 

 

The quadratic thin shell elements: S8R and S9R5 significantly outperform the linear elements, 

even for relatively coarse meshes. Note, S9R5 is preferred; however, it is not available in the 

ABAQUS CAE graphical user interface and thus engineers only using CAE and not low-level 

input commands are thus recommended to use S8R. Studies in this work employ the S9R5 element. 

 

For the S4 or S4R element the study shows elements no larger than 4 in. longitudinal and 3 in. 

transverse are required; while for the S8R or S9R5 element size may be as large as 12 in. 

longitudinal and 10 in. transverse. Given the buckling half-wavelength is 𝑏, or 60 in., this implies 

as many as 20 elements are required for convergence with the linear elements, but as little as 5 for 

the quadratic elements.     
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2.2 Plate Collapse Simulation Validation  

As a second exercise prior to the parametric study, we performed shell finite element collapse 

simulations of simply supported plates loaded on their transverse edge. These simulations require 

a geometric and material nonlinear analyses with imperfections (known as a GMNIA model). The 

material is assumed elastic-plastic with 𝐹𝑦 =50 ksi (345 MPa). Geometric imperfections are 

assumed to be in the shape of the first mode, with three different magnitudes considered: 0.1𝑡, 

0.2𝑡(𝐹𝑦/𝐹𝑐𝑟), or 0.2𝑡√𝐹𝑦/𝐹𝑐𝑟. (See ABAQUS (2024), Dawson and Walker (1972), Farzanian et 

al. (2018) for more on imperfection modeling.) To achieve variation in the plate slenderness we 

considered models that varied 𝑏 with a fixed 𝐹𝑦, or varied 𝐹𝑦 with a fixed 𝑏 – thickness, 𝑡, was 

held constant at 0.375 in. (9.525 mm). Results of the study are provided in Fig. 3, where the 

simulation results are compared to Winter’s effective width expression, i.e.: 

                   

                𝜌 = {
1 𝜆 ≤ 0.673 

(1 − 0.22/𝜆)/𝜆 𝜆 > 0.673
 

(2.2.1) 

 

where 

𝜆 = √𝐹𝑦/𝐹𝑐𝑟, 𝐹𝑐𝑟 = 𝑘
𝜋2𝐸

12(1−𝜈2)
(

𝑡

𝑏
)

2

, 𝑘 = 4 

 

Note, the prototype FastFloor plate has a slenderness of 2.6 and is highlighted in Fig. 3. The results 

show that the ABAQUS collapse simulations with an appropriate element, mesh, boundary 

conditions, material model, and imperfections provide predictions well aligned with the 

empirically derived effective width expression (or vice-a-versa the Winter expression is a good fit 

to the actual mechanics). The model is not overly sensitive to how the variation in slenderness is 

produced, nor to the choice of imperfection magnitude (note 𝑡 is constant in the studied models).  

 

 
Figure 3: GMNIA plate strength study, compared with Winter’s strength curve  
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2.3 Compressed Plates with Intermittent Supports on the Unloaded Side 

A series of ABAQUS models are created to investigate the in-plane plate compressive strength 

when intermittent support conditions are provided on the unloaded side, as shown in Fig. 4. 

 

 
Figure 4. Basic setup and variables for studied plate 

 

In the study, plate widths considered are varied from 𝑏=5 in. (127 mm) to 𝑏=60 in. (1524 mm) and 

the length of the plate 𝑎 is set to be equal to 3𝑏 and the plate thickness 𝑡 at 0.375 in. (9.525 mm). 

Given a constant 𝐹𝑦  of 50 ksi (345 MPa) this results in non-dimensional plate slenderness 𝜆 

varying from 0.3 to 3.5. The spacing 𝑠 of the discrete supports along the longitudinal (unloaded) 

edges of the plates are varied from 0.5 in. (12.7 mm) to 𝑏 in., thus providing a wide range of 𝑠/𝑏 

ratios with a maximum 𝑠/𝑏 of 1. LBA analysis is performed based on the protocols established in 

Sec. 2.1 and are utilized as the imperfection shape. GMNIA collapse analyses are performed as 

described in Sec. 2.2 with imperfection magnitude set at 0.1𝑡. The intermittent, discrete, simple 

supports are modeled as perfect, i.e. no fastener flexibility in included. The plates are modeled 

until collapse under a displacement-based loading with full results provided in Section 4. 

 

 

3. Empirical/design plate strength predictions 

Here we consider two simplified empirical models for predicting the in-plane compressive strength 

of a plate with the long sides intermittently supported. First, a simple limit state model where we 

treat buckling between the fasteners as a simply supported column and use AISC’s column curve 

(AISC 360 (2022)) and compare that strength with the plate buckling strength as predicted by 

Winter’s effective width expression (in the Peköz (1986) format). Second, an interacted model that 

follows Peköz’s (1986) unified approach in concept – utilizing the column prediction between 

supports as a limiting stress and then calculating the plate strength with the effective width 

expression limited to this column stress. Consistent with Fig. 4 our problem is: what is the 

predicted strength of an end loaded plate of length, 𝑎, width 𝑏, thickness 𝑡, continuously simply 

supported on the loaded edges but intermittently provided simple supports on the unloaded edge, 

at spacing 𝑠, with material modulus, 𝐸, Poisson’s ratio 𝜈, and yield stress 𝐹𝑦? 

 

3.1 Limit State Model 

Assume the plate strength is defined as 

 

𝑃𝑛𝐿𝑆 = min(𝑃𝑠, 𝑃𝑤) (1) 

 

where, 𝑃𝑠 is the strength of the plate assuming global “column” buckling between fasteners, i.e  
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𝑃𝑠 = {
0.658𝜆𝑠

2
𝜆𝑠 ≤ 1.5 

0.877

𝜆𝑠
2

𝜆𝑠 > 1.5
 (2) 

 

where, 𝜆𝑠 = √
𝑃𝑦

𝑃𝑐𝑟𝑠
, 𝑃𝑦 = 𝑏𝑡𝐹𝑦, and 𝑃𝑐𝑟𝑠 =

𝜋2𝐸𝐼

𝑠2
=

𝜋2𝐸𝑏𝑡3

12𝑠2
. 

 

Note, to compare across different plates we may consider the normalized capacity: 

 

𝜌𝑠 = 𝑃𝑠/𝑃𝑦 (3) 

 

Further, 𝑃𝑤 is the strength of the plate assuming Winter’s effective width is valid, i.e. 

              

                𝑃𝑤 = {
𝑃𝑦 𝜆𝑤 ≤ 0.673 

𝑃𝑦(1 − 0.22/𝜆𝑤)/𝜆𝑤 𝜆𝑤 > 0.673
 

(4) 

 

where, 𝜆𝑤 = √
𝑃𝑦

𝑃𝑐𝑟𝑤
, 𝑃𝑦 = 𝑏𝑡𝐹𝑦, and 𝑃𝑐𝑟𝑤 = 𝑏𝑡𝑓𝑐𝑟𝑤 = 𝑏𝑡𝑘

𝜋2𝐸

12(1−𝜈2)
(

𝑡

𝑏
)

2

. 

 

For the plate under study 𝑘 = 4 is appropriate. The normalized capacity, when needed is  

              
                 𝜌𝑤 = 𝑃𝑤/𝑃𝑦 

(5) 

 

3.2 Interacted Model 

In the interacted model the local plate slenderness is modified by the global column strength, 

namely the strength is defined as: 

 

                                              𝑃𝑛𝐼 = {
𝑃𝑠 𝜆𝑤𝑠 ≤ 0.673 

𝑃𝑠(1 − 0.22/𝜆𝑤)/𝜆𝑤 𝜆𝑤𝑠 > 0.673
 

(6) 

 

where, 𝜆𝑤𝑠 = √
𝑃𝑠

𝑃𝑐𝑟𝑤
, 𝑃𝑠 and 𝑃𝑐𝑟𝑤 as previously defined.  

 

 

3.3 Predicted maximum spacing 

To provide insight on when 𝑃𝑠 or 𝑃𝑤 controls in the limit state model contours of the ratio of 𝑃𝑠/𝑃𝑤 

were created and provided in Fig. 5. Notably, the contour 𝑃𝑠/𝑃𝑤 = 1 is of interest, as it provides a 

means to ascertain the limiting spacing, 𝑠, at which plate buckling is assumed to control and the 

intermittent fastener spacing no longer influences the solution.  
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Figure 5. Ratio of predicted buckling strength between fasteners 𝑃𝑠 to plate buckling strength 𝑃𝑤  

(a) contour plot and (b) fitted curve to 𝑃𝑠 = 𝑃𝑤  

 

From Fig. 5b, 𝑃𝑤 = 𝑃𝑠 when 

              
                 𝜆𝑤 = 0.55𝜆𝑠

2.74 + 0.673 
(7) 

 

Solving for 𝜆𝑠 for plate buckling to control (and not buckling between fasteners): 

 

                     𝜆𝑠 ≤ (
𝜆𝑤−0.673

0.55
)

1/2.74

> 0 (8) 

 

Simplifying 𝜆𝑠 by substituting 𝑃𝑦 and 𝑃𝑐𝑟𝑠: 

       

                 𝜆𝑠 =
𝑠√12

𝜋𝑡
√

𝐹𝑦

𝐸
 

(9) 

 

which finally results in the following criteria for the maximum spacing: 

 

                 𝑠 ≤
𝜋𝑡

√12
(

𝜆𝑤 − 0.673

0.55
)

1/2.74

√
𝐸

𝐹𝑦
> 0 

(10) 

 

Or in an alternative non-dimensional form: 

 

                      
𝑠

𝑏
≤

𝜋

√12

𝑡

𝑏
 (

𝜆𝑤 − 0.673

0.55
)

1/2.74

√
𝐸

𝐹𝑦
> 0 

(11) 

 

Note, a fully explicit expression is possible by expanding 𝜆𝑤, but to calculate the plate strength 

𝜆𝑤 must be known, so the advantage of the expanded expression seems relatively minor.  
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4. Shell Finite Element Results and Comparison to Strength Models 

The shell finite element models exhibit two distinct buckling modes, as shown in Fig. 6 for the 

first eigen-buckling mode shape of a steel plate with 𝑏/𝑡 = 30 and fasteners spaced at 𝑠/𝑏 of 1/5 

and 5/6. 

      
Figure 6. Local buckling and global buckling modes shown for b=30” plate with fastener spacing 5” and 25” 

 

Collapse analysis is conducted in ABAQUS as detailed in Sec. 2.3. The resulting strengths are 

normalized by the squash load and compared with the empirical strength models in Fig. 7 and 8. 

In addition, the numerical statistics for the predicted strength from ABAQUS (𝑃𝐹𝐸) divided by the 

predicted strength from the empirical methods (𝑃𝑛𝐿𝑆 or 𝑃𝑛𝐼) are provided in Table 2. 

 
Table 2: Statistical comparison of empirical strength models with simulations 

𝑏/𝑡 𝜆𝑤 𝑃𝐹𝐸/𝑃𝑛𝐿𝑆 𝑃𝐹𝐸/𝑃𝑛𝐼 

  mean CoV mean CoV 

13.3 0.29 0.953 0.071 0.953 0.071 

26.7 0.58 0.960 0.083 0.960 0.083 

40.0 0.87 1.020 0.064 1.154 0.069 

53.3 1.16 1.047 0.072 1.390 0.154 

66. 7 1.46 1.096 0.143 1.527 0.226 

80.0 1.75 1.093 0.131 1.359 0.213 

120.0 2.62 1.248 0.197 1.383 0.188 

160.0 3.49 1.088 0.162 1.394 0.186 

All data 1.063 0.115 1.281 0.149 

𝑃𝑠 ≤ 0.8𝑃𝑤 1.208 0.175 1.230 0.206 

0.8𝑃𝑤 < 𝑃𝑠 ≤ 1.2𝑃𝑤 0.953 0.105 1.137 0.209 

𝑃𝑠 > 1.2𝑃𝑤 1.012 0.067 1.405 0.198 
𝐸 =29000 ksi, 𝐹𝑦 =50 ksi, 𝑡 =0.375 in. [𝐸 =199955 MPa, 𝐹𝑦 =345 MPa, 𝑡 =9.525 MPa.] 
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Figure 7. Comparison of normalized strength from ABAQUS with Empirical Limit State Model 
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Figure 8. Comparison of normalized strength from ABAQUS with Empirical Interaction Model 
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For the separate limit state model (𝑃𝑛𝐿𝑆, Fig.7) the design expressions provide a prediction of the 

𝑠/𝑏 at which plate buckling will control the strength. In Table 3 we compare this prediction to the 

strength level (and corresponding 𝑠/𝑏 ) at which the collapse simulations begin predicting 

capacities lower than the Winter plate buckling strength.   

 
Table 3: Comparison of predicted limiting 𝑠/𝑏 with simulations 

𝑏/𝑡 𝜆𝑤 𝑠/𝑏 limit 

  LS model FE Simplifiedb FE/simplified 

13.3 0.29 0a 0.5 0.33 1.52 

26.7 0.58 0a 0.5 0.33 1.52 

40.0 0.87 0.38 0.33 0.32 1.03 

53.3 1.16 0.39 0.33 0.28 1.19 

66. 7 1.46 0.37 0.23 0.25 0.93 

80.0 1.75 0.35 0.22 0.23 0.97 

120.0 2.62 0.29 0.19 0.19 1.03 

160.0 3.49 0.25 0.16 0.16 1.00 
𝐸 =29000 ksi, 𝐹𝑦 =50 ksi, 𝑡 =0.375 in. [𝐸 =199955 MPa, 𝐹𝑦 =345 MPa, 𝑡 =9.525 MPa.] 

a) LS model predicts 𝑠/𝑏=0 required if 𝜆𝑤 ≤ 0.673 (fully effective) 

b) simplified model as provided in the discussion 

 

 

4. Discussion 

The shell finite element models demonstrate that intermittently connected plates can develop the 

in-plane compressive plate strength of a continuously connected plate. For the studied plates the 

required spacing, 𝑠/𝑏, from the FE simulations varies from 0.16 to 0.50 with the most locally 

slender plates requiring the tightest spacing. The limit state model does not accurately capture the 

transition, so an alternative is sought. The limiting 𝑠/𝑏 is empirically derived as a function of 𝜆𝑤:  

 

                 
𝑠

𝑏
≤

0.3

√𝜆𝑤

< 0.33 (4.1) 

 

An upperbound is placed on 𝑠/𝑏 to insure some limited redundancy in the provided number of 

support points. Accuracy of this simple expression is provided in Table 3, and the result is 

satisfactory and therefore recommended for use in practice. It is important to note that in this study 

fastener flexibility is not considered, as such, it is presumed that the local stiffness at the fasteners 

is high enough to be sufficiently ignored – if that is not the case the 𝑠/𝑏 limits will need to be 

further decreased in an intermittently connected plate. In addition, this work examines only point 

supports, a stitch weld, or other intermediate support with a finite length is not considered, and 

could lead to more relaxed spacing requirements depending on support length. 

 

For the general case where the engineer wants to predict the strength independent of the fastener 

spacing, two models were considered: the separate limit state model (𝑃𝑛𝐿𝑆) and the interacted 

model ( 𝑃𝑛𝐼 ). The interacted model is easy to implement, follows the logic of local-global 

interaction that is utilized in design specifications today, but is too conservative to recommend. 

Interaction of the type assumed in the model is not observed in the simulations. The limit state 

model provides reliabile predictions at its two limits, but over-estimates the strength in the region 
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in which the failure is transitioning between plate buckling and buckling between the fasteners 

(Note the results for 0.8𝑃𝑤 < 𝑃𝑠 ≤ 1.2𝑃𝑤  in Table 2). Additional modifications are needed to 

provide a robust solution, though as a method for preliminary strength prediction it provides all 

necessary features. 

 

The authors are also interested in the in-plane shear strength and stiffness of intermittently 

connected plates and will extend their current study to those conditions in the near future. 

 

 

5. Conclusions 

Shell finite element simulations of compressed plates with intermittently connected simple 

supports on their unloaded side were completed. The simulations covered a broad range of plate 

slenderness and support spacing. It was found that intermittently supported plates can develop their 

full plate compressive capacity. However, the required spacing decreases as the plate becomes 

more slender. In general, fastener spacing divided by plate width in the ratio of 0.15 to 0.30 is 

found to be necessary for developing full plate compressive capacity. Expressions are developed 

and provided for the required spacing. Work is underway to extend the studies to in-plane shear 

stiffness and strength of intermittently supported plates. 
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