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Abstract 

In recent decades constrained finite strip/element methods were introduced to perform modal 

identification and/or decomposition analysis of thin-walled members. Originally, the constraint 

equations were based – primarily – on kinematic equations to establish the deformation classes, 

such as global, distortional, local, etc. Lately, a new concept was introduced, where the modal 

classes are derived from specially defined forces acting on the member. In this novel approach the 

basis system of a mode class is obtained by solving the member's equilibrium equation under 

specialized forces, which requires the flexibility matrix. These two approaches, i.e., the kinematic-

based and the force-based decomposition approaches are built on distinctly different mechanical 

ideas, still, they both provide similar capabilities for examining and understanding thin-walled 

members. In this paper, the new force-based method is introduced and applied in the context of 

the semi-analytical finite strip method. Numerical examples are provided to illustrate the 

similarities and important differences between the force-based and kinematic-based 

decomposition approaches.   

 

 

1. Introduction 

The application of modal decomposition in the buckling analysis of thin-walled members has 

proven to be an efficient tool both in improving understanding of behavior, and in improving 

computational efficiency. Modal decomposition separates the general displacement field into 

specific mode classes. Usually, three major modal classes are introduced: global (G), distortional 

(D) and local (L), but depending on the specific modal decomposition method, further sub-spaces 

might be necessary and/or useful to define (e.g. other (O) modes associated with shear and 

transverse extension). In the pioneering modal decomposition methods, such as the constrained 

Finite Strip Method (cFSM) and constrained Finite Element Method (cFEM), the modes are 

defined (essentially) by geometric constraints, see e.g. Ádány and Schafer (2008), and are similar 

to the definitions employed in Generalized Beam Theory, see e.g., Ádány et al. (2009). Although 

the kinematic-based modal decomposition helps to understand the deformations of a thin-walled 

member, and the method can be a useful tool in practical design, it has some disadvantages and 
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limitations. In the case of curved cross-sections, for example, the kinematic-based constraints do 

not work in a meaningful way, that is why special considerations are needed if cFSM is applied 

for cold-formed steel members with rounded corners (Beregszászi and Ádány, 2019), or, that is 

why specific modes are necessary to introduce in GBT if the cross-section is curved, see e.g., 

Nedelcu (2023). 

 

Besides employing kinematic criteria to obtain the deformation classes, other approaches are 

possible. In Khezri and Rasmussen (2019a,b) the modal decomposition is based on energy 

considerations. Force-based modal decomposition was proposed by Jin (Jin et al, 2021a,b) and 

also by Becque (Becque and Davison, 2021). In this paper a newer variant of the force-based 

approach is applied and discussed in comparison with the original cFSM approach. To be able to 

easily distinguish between the two approaches, new acronyms are introduced: the original, 

kinematic-based approach will be referred to as kcFSM, while the force-based approach will be 

referred to as fcFSM. The acronym also is intended to partially imply the direct use of the stiffness 

matrix in the kcFSM and the flexibility matrix (i.e., the inverse of the stiffness matrix), in the 

fcFSM.  

 

This paper begins, in Section 2, with the basics of both approaches. Then, in Section 3, the fcFSM 

is presented in a more detailed way, and applied to solve a classic buckling problem of a channel 

section column. As it will turn out, in the case of such simple problems fcFSM and kcFSM are 

found to lead to rather similar results. However, in Section 4 further examples are presented and 

discussed, which highlight the important differences between the two approaches.  

 

2. kcFSM and fcFSM basics 

The goal in the semi-analytical finite strip method (FSM) is to perform linear buckling analysis 

(LBA) for prismatic thin-walled structural members. The following generalized eigen-value 

problem is to be solved: 
 
 𝑲𝒆𝜹 = 𝜆𝑲𝒈𝜹 (1) 
 
where 𝑲𝒆 and 𝑲𝒈 is the elastic and geometric stiffness matrix, respectively, 𝜹 is an eigenvector, 

and 𝜆 is the corresponding eigenvalue. The eigenvector, physically, is a displacement vector which 

gives the buckling shape, while the eigenvalue is a load multiplier (and the assumed stresses 

associated with the reference load are embedded in 𝑲𝒈 ) which gives the load level where 

bifurcation of equilibrium occurs, called the critical load.  

 

Regardless of the criteria employed (i.e., whether they are kinematic-based or force-based), the 

basis vectors of the sub-spaces must be defined. If the basis vectors of a given mode class are 

collected into the 𝑪∗ constraint matrix, a linear transformation of the degrees of freedom (DOF)s 

can readily be completed, as: 
 
 𝜹∗ = 𝑪∗𝝋∗ (2) 
 
where 𝑪∗ is the constraint matrix of a class, where the superscript “*” denotes the mode class, 

which can be “L” (local), “D” (distortional), “G” (global), or other if any; 𝜹∗ is a displacement vector 

(expressed by the usual FSM nodal displacements); and 𝝋∗  can be understood as the modal 

displacement vector for the class, expressed by modal degrees of freedom. Note, the number of 
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elements of 𝜹∗ is equal to the number of nodal degrees of freedom of the problem, regardless of 

the mode class, while 𝝋∗ has fewer elements and the element number is dependent on the mode 

class.  

Applying Eq. (2) for the linear buckling problem formulated by Eq. (1), the modal buckling 

problem can be written as: 
 

 ([𝑪∗]T𝑲𝒆𝑪∗)𝝋∗ = 𝜆([𝑪∗]T𝑲𝒈𝑪∗)𝝋∗    →      𝑲𝒆
∗𝝋∗ = 𝜆𝑲𝒈

∗ 𝝋∗ (3) 
 
 
where 𝑲𝒆

∗  and 𝑲𝒈
∗  are reduced-size elastic and geometric stiffness matrices for the eigen-value 

problem constrained to space “*”. 

 

In kcFSM, the separation of global (G), distortional (D), local (L) and other (O) deformation modes 

are completed through enforcing one or more out of a set of largely kinematic criteria. The most 

important criteria are as follows. 

 The in-plane shear strain is zero. 

 The transverse normal strain is zero. 

 The warping has linear distribution along the width of a flat plate element. 

 The warping is nonzero. 

 The cross-section is undistorted. 

Further criteria and sub-classes within G, L, and O have been introduced, see Ádány and Schafer 

(2014); however, the above criteria are the most crucial. 

 

On the other hand, fcFSM categorizes the mode classes based on orthogonality criteria and force-

displacement relationships, as shown by the four criteria of fcFSM: 

 Criterion #1: The GD mode class is defined by the displacements of the member calculated 

from mid-line direction transverse forces, uniformly distributed in each wall. 

 Criterion #2: The displacements for the D mode class are within the GD class, and the loads 

are distributed so that they are self-balanced. 

 Criterion #3: G, D and L classes span the whole deformation space of a member. 

 Criterion #4: G, D and L classes are orthogonal to each other with respect to the stiffness 

or flexibility matrix of the member. 

 

The different mode class criteria of kcFSM and fcFSM lead to different constraint matrices, hence, 

the modal analysis results may be different. The similarities and differences in the two approaches 

is illustrated in the following sections through examples. 

 

3. Lipped channel column 

 

3.1 Example summary 

An axially compressed steel lipped channel column is considered. The section has a web height of 

120 mm, a flange width of 80 mm, a lip length of 15 mm, and a thickness of 1 mm. A customized 

version of the CUFSM software (CUFSM, 2023) is used for the buckling analysis of the member. 

The finite strip model is depicted in Fig. 1.  

 



 4 

 
Figure 1: The finite strip model of a lipped channel C120×80×15×1: the nodes and the coordinate system 

 

The material is assumed to be linear elastic, isotropic, with a Young’s modulus of 210 GPa and 

Poisson’s ratio of 0.3. In terms of the mesh, the web consists of 6 strips, the flange of 4 strips, and 

the lip a single strip. The number of strip nodal lines in the model is 17.  

 

3.2 Constraint matrix for GD in fcFSM 

According to the fcFSM criteria, equilibrium equations need to be solved. The equilibrium 

equation can be expressed as: 
 
 𝒑 = 𝑲𝒆𝜹 (4) 
 
The displacement vector 𝜹 has 68 DOF, 4 for each nodal line: the U, V, W translations along the 

X, Y, and Z axes, and the θ rotation around the Y-axis. The 𝒑  load vector consists of the 

corresponding nodal forces and moments NX, NY, NZ and T. The 𝑲𝒆 stiffness matrix is 68×68. 

 

According to Criteria #1 and #2, the assumed load is uniform transverse load along the wall lines, 

as illustrated in Fig. 2. First, the distributed wall forces must be transformed into equivalent nodal 

forces, which can be expressed in matrix format as: 
 
 𝒑 = 𝑱𝒒 (5) 
 
where 𝒒 contains the distributed load intensities, while 𝑱 represents the transformation from wall 

forces to nodal forces.  

 

According to Criterion #1 of fcFSM, 𝒒 is built up from wall forces parallel to the midline of the 

cross-section plates (i.e. in the local x direction of a strip), see Fig 2. The example has 5 walls, 𝒒 

can be expressed as 𝒒 = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5}T . Moreover, any 𝒒 vector can be expressed by the 

linear combination of the 𝑞𝑖 basis vectors, so, the linear space of the wall forces is 5-dimensional. 

Criterion #1 states that the GD mode class (i.e., the union of G and D) is derived from the wall 

forces, therefore, the basis (displacement) vectors of the GD mode class can be achieved by (i) 

transforming the basis vectors of the wall forces into nodal forces by Eq. (5), then (ii) solving the 

equilibrium equation Eq. (4). If the 𝑸GD matrix contains of the 5 basis vectors of the wall forces 

in its columns, then, the transformation into nodal line forces is:    
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 𝑷GD = 𝑱GD𝑸GD (6) 
 

where 𝑷GD is a matrix with 5 columns, each column being a vector of nodal forces in the GD mode 

class. Dimension of the transformation matrix 𝑱GD is 68×5, the row number is the same as the DOF 

of the model, and the column number is the same to walls. Apparently, the rows in 𝑱GD 

corresponding to the longitudinal nodal forces NY and nodal moments T are all zeros. In addition, 

the X- and Z- direction nodal forces NX and NZ are determined by the intensity of the q acting on 

the wall where the node locates, e.g. the NX of Node #14 (located in the middle of upper flange, 

which is evenly divided into four elements by the nodes) is NX,14 =q4×Aflange/4, thus the 

corresponding row of 𝑱GD should be {0, 0, 0, Aflange/4,0}. 

 

 

Figure 2: Distributed wall loads for GD mode class in fcFSM 

 

From each of these column vectors the corresponding displacement vector can be calculated, 

formally expressed as: 
 
 𝜟GD = 𝑲𝒆

−1𝑷GD = 𝑲𝒆
−1𝑱GD𝑸GD (7) 

 

The obtained displacement vectors (in the columns of 𝜟GD) are the basis (displacement) vectors 

for the GD linear space, or, in other words, the column vectors of the 𝑪GD constraint matrix for the 

GD mode class. From Eq. (7) one can observe they are determined from the inverse of the stiffness 

matrix, also known as the flexibility matrix. Theoretically, the base system of the wall forces, i.e., 

the columns of the 𝑸GD matrix, can be determined infinitely many ways; however, there is no 

reason not to use the trivial basis system which is composed of unit vectors. Therefore, 𝑸GD can 

be equal to the 5×5 unit matrix, and the expression to calculate the GD constraint matrix simplifies 

to: 
 
 𝑪GD = 𝑲𝒆

−1𝑱GD (8) 
 
 

3.3 Constraint matrix for D in fcFSM 

Per fcFSM criterion #2, D is a subset within the GD class where the loads on each cross-section 

are self-balanced. This means that any 𝒒 in the D class, let us denote it as 𝒒D, must satisfy the 

force (vertical and horizontal) and moment equilibrium equations, as follows:  
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 {

(𝑞1
D + 𝑞5

D) ∙ 𝐴lip − 𝑞3
D ∙ 𝐴web = 0

𝑞2
D − 𝑞4

D = 0

(𝑞1
D + 𝑞5

D) ∙ 𝐴lip ∙ 𝑏 + 𝑞4
D ∙ 𝐴flange ∙ ℎ = 0

 (9) 

 
where Alip, Aweb, Aflange are, respectively, the cross-section area of a lip, a web, and a flange, and b 

and h are the width and height of the cross-section, respectively. In matrix format: 
 
 𝑯𝒒D = 𝟎 (10) 
 
where 
 

 𝑯 = [

𝐴lip 0 −𝐴web 0 𝐴lip

0 1 0 −1 0
𝑏 ∙ 𝐴lip 0 0 ℎ ∙ 𝐴flange 𝑏 ∙ 𝐴lip

] (11) 

 
The above expression for 𝑯 is valid for lipped channels only, however, it can easily be generalized 

to any cross-section. Once 𝑯 is constructed, the basis vectors (of the wall forces) of the D mode 

class can be obtained as: 
 
 𝑸D = nul(𝑯) (12) 
 
Since D is part of GD, Eq. (7) can be applied to calculate the displacement basis vectors for D, i.e., 

the 𝑪D constraint matrix is obtained as: 
 
 𝑪D = 𝑲𝒆

−1𝑱GD𝑸D = 𝑲𝒆
−1𝑱GDnul(𝑯) (13) 

 
 

3.4 Constraint matrix for G in fcFSM 

According to fcFSM Criterion #4, the vectors in the various spaces are orthogonal to each other 

with respect to the elastic stiffness matrix (i.e. deformations in one space do not create forces in 

another space). Considering the orthogonality between G and D, any 𝜹G displacement vector in 

the G mode class is orthogonal to any 𝜹D displacement vector in the D mode class as: 
 
 [𝜹D]T𝑲𝒆𝜹G = 0   →    [𝜹D]T𝒑G = 0 →  [𝜹D]T𝑱GD𝒒G = 0 (14) 
 
To ensure Eq. (14) is satisfied for any 𝜹D , apply the orthogonality equation to the basis 

displacement vectors of the D mode class: 
 

 [𝑪D]T𝑱GD𝒒G = 𝟎 (15) 
 
from which the basis vectors of the wall forces in the G mode class can be expressed as: 
 

 𝑸G = null([𝑪D]T𝑱GD) (16) 
 
Since G is part of GD, Eq. (7) can be applied to calculate the displacement basis vectors for G, i.e., 

the 𝑪G constraint matrix is obtained as: 
 
 𝑪G = 𝑲𝒆

−1𝑱GD𝑸𝐺 = 𝑲𝒆
−1𝑱GDnull([𝑪D]T𝑱GD) (17) 
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3.5 Constraint matrix for L in fcFSM 

According to Criterion #4, the vectors in the various spaces are orthogonal to each other through 

the elastic stiffness matrix.  Considering the orthogonality between GD and L, any 𝜹L 

displacement vector in the L mode class is orthogonal to any 𝜹GD displacement vector in the GD 

mode class as: 
 
 [𝜹GD]T𝑲𝒆𝜹L = 0 (18) 
 
To make sure that the above equation is satisfied to any 𝜹GD, apply the orthogonality equation to 

the basis displacement vectors of the GD mode class: 
 

 [𝑪GD]T𝑲𝒆𝜹L = 𝟎 (19) 
 
Considering Eq. (8), and utilizing that the stiffness matrix is symmetric: 
 
 [𝑲𝒆

−1𝑱GD]T𝑲𝒆𝜹L = 𝟎  →   [𝑱GD]T[𝑲𝒆
−1]T𝑲𝒆𝜹L = 0  →   [𝑱GD]T𝜹L = 0 (20) 

 
from which the displacement basis vectors for L, i.e., the 𝑪L constraint matrix is obtained as: 
 

 𝑪L = null([𝑱GD]T) (21) 
 
Note, this definition of the L space would seem to be expansive, as all deformations that are not 

GD are defined as L. As the examples will illustrate, the reality is more subtle.  

 

3.6 Unconstrained and constrained signature curves 

For the given lipped channel column, the calculations of the signature curves were determined by 

a customized version of the CUFSM software, employing various options around kcFSM and 

fcFSM. The results are summarized in Fig. 3, where the first (lowest) critical load values are plotted 

as a function of the buckling half-wavelength, 𝑙𝑜. 

  ‘FSM signature’ is the unconstrained solution, obtained from Eq. (1).  

 ‘L-kcFSM’, ‘D-kcFSM’, and ‘G-kcFSM’ are constrained solutions, by solving Eq. (3) 

constrained into pure L, pure D, and pure G, respectively, and the constraint matrices are 

defined by the kinematic-based criteria. 

 ‘L-fcFSM’, ‘D-fcFSM’, and ‘G-fcFSM’ are constrained solutions, by solving Eq. (3) 

constrained into pure L, pure D, and pure G, respectively, and the constraint matrices are 

defined by the force-based criteria, given by Eqs. (13), (17) and (21). 

 

In addition, modal identification of the FSM signature solution is performed by the two methods 

and compared in Fig. 3. It can be found from Fig. 3 that although the criteria for modal definitions 

in kcFSM and fcFSM are different, their modal buckling analyses lead to nearly identical solutions. 

 

Since this example is well-known, it does not require a detailed discussion. In general, the signature 

curves and modal participations are in accordance with earlier results, discussed in earlier papers.  

 

As far as the modal decomposition is concerned, the general observation is that the results from 

kcFSM and fcFSM are very similar. No discrepancy can be observed between the L solutions of 

the two methods, and the pure L buckling solutions match well with the FSM signature curve in 

the l0 < 300mm region. This is remarkable, since the L modes in the two approaches are so 
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differently defined. In kcFSM, the warping of L class is prescribed to be zero. As a result, mid-

line direction translations of all the nodes are zero due to the null in-plane shear strain assumption. 

In fcFSM, the L class is deduced from the orthogonality to GD class where the intensity of the 

evenly distributed mid-line direction force on a wall can be an arbitrary value, which means the 

virtual work done by this force on the L mode deformation should be zero. As a result, in fcFSM 

the average mid-line direction translation of each wall of the L class should be zero. This is not 

exactly the same as in kcFSM, but this difference has no noticeable effects in this example. 

 

 
Figure 3: Signature curves and modal participations, section without extra supports 

 

The D and G solutions are basically consistent between the kcFSM and fcFSM, both the signature 

curves and the buckled shapes. The kcFSM critical values are always higher, which is primarily 

due to the fact that in kcFSM the transverse extensions are forced to be zero, which results in a 

slightly increased axial rigidity of the plate elements of member. More generally, the transverse 

extensions and in-plane shear deformations are totally excluded from the GD class of kcFSM (and 

handled in separate classes), while in fcFSM small transverse extensions and in-plane shear are 

allowed, and in fact, exist within the G and D classes. 
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4. Lipped channel column with extra supports 

4.1 Example summary 

The example is a direct extension to that of Section 3. However, transverse springs are added to 

the web and bottom flange, as might exist due to bracing or attachment along the length of a 

member, as shown in Fig. 4. The spring stiffness values vary, and will be specified below. 

 

 

Figure 4: The member with extra springs 

 

4.2 The effect of elastic springs in cFSM 

In the case of kcFSM the definition of the modal basis vectors (i.e., the calculation of the constraint 

matrices) is dependent on the cross-section geometry only, hence, it is independent of the supports 

in general, or independent of added springs in this specific example. As far as the constraint 

buckling solutions are concerned, therefore,  𝑪∗  is not affected by the added springs, 𝑲𝒈  is 

unchanged, too (since in the implementation of the semi-analytical FSM the initial  stress state is 

assumed, not calculated), however, 𝑲𝒆  is modified: the spring stiffnesses are added to the 

corresponding elements of the elastic stiffness matrix. Accordingly, the constrained signature 

curves and the modal participations will be different. 

 

In the case of fcFSM, the elastic stiffness or flexibility matrix has a prominent role in calculating 

the 𝑪∗ constraint matrices, as can be observed from the derivations in Section 3. Consequently, not 

only the constrained signature curves and modal participations, but the G-D-L spaces will be 

different compared to the case without the extra spring supports. 

 

4.3 Unconstrained and constrained signature curves with elastic springs 

The signature curves and modal participations have been recalculated with the springs included. 

The spring stiffness is set to 5.0 N/mm/mm. The same options have been used as in Section 3.  The 

obtained results are summarized in Fig. 5. 

 

By adding the support springs the elastic buckling loads increase, and the unconstrained signature 

curve moves up. The general shape of the signature curve remains the same, though in the range 

of medium half-wavelengths the shape of the signature curve is slightly changed and the buckling 

shape is modified as well.  
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The unconstrained (FSM signature) and pure fcFSM D buckling modes are similar, and they are 

clearly different from the shape in the example without springs. In fact, the buckled shapes are 

similar to the D buckling of a beam problem (which is not surprising: the springs reduce the 

displacement of the lower flange zone, similarly to the tensile stresses in a beam). The pure kcFSM 

D buckling mode is similar to a point-symmetric D mode, which is typically the second D mode 

in unsupported members; however, the symmetric D mode is now excluded by the spring supports. 

 

 

Figure 5: Signature curves and modal participations, section with elastic springs 

 

When the buckling is dominated by L or G (i.e., small or large half-wavelengths), the constrained 

curves remain close to the unconstrained one, similarly to what was observed in the Section 3 

example. However, in the medium length range the support springs have a significant effect. In 

the case of fcFSM the pure D and the unconstrained curves are still similar; accordingly, the fcFSM 

modal participation indicates that the buckling is dominated by distortional deformations in this 

region. In the case of kcFSM, however, the pure D signature curve runs significantly above the 

unconstrained one; accordingly, the kcFSM-based modal identification indicates strong coupling 

between the various modes. 
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4.3 Unconstrained and constrained signature curves with quasi-rigid springs 

The signature curves and mode participations have been recalculated again, with considering 

quasi-rigid springs, with a stiffness of 1010 N/mm/mm. The results are summarized in Fig. 6. 

 

 
Figure 6: Signature curves and modal participations, section with quasi-rigid springs 

 

Using quasi-rigid springs instead of the elastic ones, further modifies the results. Nevertheless, 

most of the previous observations remain valid, with two important differences. One, in the range 

of small half-wavelengths the critical values (either constrained or unconstrained) are further 

increased. Two, in the length of medium half-wavelengths the kcFSM pure D critical values 

become so high that the pure D curve is not visible in the plot. Remarkably, the fcFSM pure D 

curve remains close to the unconstrained curve. It is also interesting to point out that even though 

the kcFSM pure D critical values are high, the D displacement modes still exist, as clearly 

observable by the modal participation plots, where the D modes have important contributions. 

 

5. Concluding remarks 

In this paper two modal approaches: a kinematic-based and a force-based approach were discussed 

for understanding the deformations in thin-walled members. Both approaches were implemented 

in the context of the semi-analytical finite strip method and applied to the linear buckling analysis 
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of thin-walled members. The kinematic-based approach is identical to the previously developed 

constrained Finite Strip Method (cFSM). To distinguish between the two approaches, new 

acronyms were introduced: kcFSM for the kinematic-based cFSM and the new fcFSM for the 

force-based cFSM. The two methods were briefly presented, then discussed via numerical 

examples. The numerical examples show that in classic simple problems the two approaches yield 

nearly identical results. However, if they are applied for more complex problems, the end results 

differ significantly. More specifically: 

 In fcFSM three deformation classes are distinguished, in kcFSM there are 4 major 

deformation classes, some of them divided into further sub-classes. 

 While in kcFSM the deformation modes are dependent on the cross-section geometry only, 

in fcFSM the deformation modes may be influenced by other parameters of the member, 

such as supports.  

 The two approaches were found to be similar in predicting global and local-plate buckling, 

but more significant differences were observed in the range of medium half-wavelengths, 

where distortional buckling governs. The results suggest that the fcFSM pure D modes are 

more similar to unconstrained FSM solutions. 

Further analytical and numerical studies are in progress, as are open source tools to allow the 

community to utilize the different approaches. 
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