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Abstract 

This paper investigates the lateral-torsional buckling behavior and strength of compact steel I-

section beams subjected to biaxial bending (without axial force) and assess the accuracy of the 

Eurocode 3 beam-column interaction formulae for the buckling limit state. Particular focus is 

placed on the comparison between various support conditions (pinned, clamped, free) along the 

two principal planes. The load cases considered include point loads and end moments. This 

investigation relies on non-linear numerical results obtained using a geometrically exact beam 

element developed by one of the authors, which allows including the effects of geometric 

imperfections, plasticity, residual stresses, large displacements and finite rotations (including 

Wagner effects). The results obtained show that lateral-torsional buckling under biaxial moment 

can exhibit quite unexpected results — for instance, for the same slenderness and bending moment 

diagrams, preventing the lateral rotation at the support can lead to a lower strength — and that the 

Eurocode 3 interaction formulae can lead to unsafe results even in simple cases. 

 

 

1. Introduction 

The buckling behavior of columns, beams and beam-columns has been extensively investigated 

by many researchers, see e.g. the references listed in (Ziemian 2010). Most of the research 

concerns isolated and simply supported members — single span members with end “fork” 

conditions (null translations and torsional rotation, but free to warp) — albeit subjected to many 

different load cases. This is the case of the numerical studies that led to the proposal of the current 

beam-column interaction formulae in Eurocode 3 (CEN 2005; Boissonnade et al. 2006). The 

application of these formulae to other support cases was first investigated by the author (Gonçalves 

& Camotim 2004), for the in-plane case with axial compression and uniaxial bending, 

demonstrating that unsafe or excessively safe strength predictions can be obtained if the equivalent 

moment factor (��) is not judiciously selected, as the coded expressions essentially apply to the 

simply supported case. 

 

This paper addresses the case of lateral-torsional buckling under biaxial bending (without axial 

force). Particular focus is placed on the effect of the boundary conditions (namely other than 
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simply supported) and the cases shown in Fig. 1 are considered (w refers to the warping DOF). 

The two cross-sections selected are similar to those in other related research initiatives (e.g. Ofner 

1997, Boissonnade et al. 2006), are not susceptible to local buckling (compact sections) and cover 

appropriate height/width ratios and residual stress patterns. Using the notation displayed in the 

bottom part of the figure, a beam support scheme is indicated in the format AByCDz, where A,C 

are used for the left support and B,D for the right support, whereas the indices pertain to the 

bending plane (y vertical; z horizontal). For instance, SCyCSz, means that the left support is type 

Sy+Cz and the right support is type Cy+Sz. 

 

 
Figure 1: Cross-sections, material properties, residual stresses, loading and boundary conditions 

 

The results of three analysis types are reported in the paper: GNA (Geometrically Non-linear 

Analyses), GMNA (Geometrically and Materially Non-linear Analyses) and GMNIA 

(Geometrically and Materially Non-linear Analyses with geometric imperfections and residual 

stresses). In the material non-linear cases, an elastic-perfectly plastic law is assumed. For the 

GMNIA analyses, a lateral single half-wave imperfection of amplitude �� � �/1000 is adopted, 

except in the cases with 
 � �1, in which case two half-waves are considered. The two directions 

for the imperfections are always investigated and only the lowest strength obtained is reported. It 

should be noted that the 
 � �0.5 case is of particular interest in this study, since it can be 

obtained with both SS and SC boundary conditions in that plane of bending, and therefore allows 

investigating the effect of varying the boundary conditions while maintaining the bending moment 

diagram shape. 

 

The � parameter is introduced, 

 

 � � arctan ���
���, (1) 

 

where �� � ��/���,�  is the non-dimensional moment acting about axis i and ���,�  is the 

corresponding full plastic moment. The GMNIA analyses carried out concern � � 0 (minor axis 

bending), 11º, 22.5º, 45º, 67.5º, 79º and 90º (major axis bending). 
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The numerical results are obtained using the displacement-based geometrically exact beam finite 

element described, validated and applied in (Gonçalves 2019, 2020, 2022), which can handle large 

displacements and finite rotations, plasticity, residual stresses and Wagner effects. As proposed in 

these papers, the beams are modelled using 30 equal length finite elements and the cross-section 

integration is carried out with 11×3 (mid-line × thickness directions) Gauss points in each wall. 

The flange-web radius is neglected. 

 

2. Buckling under My 

First, the uniaxial (major axis, � �  90º) bending case is examined, since results for support 

conditions other than simply supported are not available in the literature (to the authors’ best 

knowledge). Fig. 2 shows the lateral-torsional buckling reduction factors 

 

 �� � !�"#$%&
!'(,� , (2) 

 

obtained for several loading and support conditions, grouped according to the corresponding 
) 

ratio, as well as the values (in the form of curves) obtained using the formulation which will be 

adopted in new version of Eurocode 3 for simply supported members (Taras & Greiner 2010, 

Greiner & Taras, 2010), reading 

 

 

�� � *
+,-./+,-0 1*23,-0 ≤ 1,

Φ� � 6
7 81 + : �;,-23,-0

23�0 <=̅? � 0.2A + =̅� 7 �B ,
 (3) 

 

where the imperfection factor ��  equals 0.34 for IPE500 and 0.27 for HEB300, : � 1.25 �0.1
) � 0.15
)7 for linear bending moment diagrams between lateral supports, =̅�  is the non-

dimensional slenderness for lateral-torsional buckling, 

 

 =̅� � /!'(,�
!CD , (4) 

 

with the critical bifurcation moment �EF calculated from a linear stability analysis, and =̅? is the 

non-dimensional slenderness for weak-axis flexural buckling (as a column), calculated using for 

the buckling length the laterally unsupported length of the compression flange. 

 

The small scatter in each graph evidences that, at least for the cases considered, the boundary 

conditions do not affect significantly the �� � =̅�  trend. For this reason, the new Eurocode 3 

approach, even though it was developed for simply supported members with critical buckling 

mode shape imperfections, is found to provide quite accurate and generally safe ��  values if =̅? 

is calculated for a simply supported member with the same =̅�  value. Although there is a small 

scatter for 
) � �0.5, it should be noted that the CSySSz case leads to slightly higher resistances, 

followed by the CSyCSz case, whereas the values for SSyCSz and SSySSz virtually overlap (this is 

more visible for IPE5000). 
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Figure 2: Buckling strength for uniaxial bending 

 

3. GNA and GMNA under biaxial bending 

 

3.1 Simply supported members under uniform moment 

Attention is turned first to the “benchmark” case: simply supported members (SSySSz) subjected 

to uniform moments (
) � 
? � 1). For this case, Kaim (2004) derived second-order elastic stress 

resultants at mid-span by introducing several simplifying assumptions (e.g. the displacements 

follow a half sine wave shape). These resultants can be written as 

 

 

�)GG  �  �) ,
�?GG �  �?I? ,     I? � 6 – K�CD0

61�CD0 ,
LGG � !�

!�
M0NGO

�0 IP,      IP � �CD0 Q6 1 KR
61�CD0 ,

 (5) 

  

where �)GG  and �?GG  are the second-order moments, LGG  is the second-order bimoment, �EF �
�)/�EF, S � T?/T) (minor/major second moments of area) and TU is the section warping constant. 

In this simplified solution, (i) the major axis moment �) is unchanged, (ii) the minor axis moment 

�?  is amplified through function I?  and (iii) a bimoment is developed, which is inversely 

proportional to the square of the span, �7. It is worth noting that the amplification function I? is 

considerably different from the standard amplification function for axial force, 1/Q1 � V/VEFR, 
particularly for sections with high S values.  

 

Fig. 3 shows a comparison between the analytical solution (5) and “exact” GNA/GMNA results, 

for =̅� � 1, 2 and � � 11º, 45º, 79º. The stress resultants are normalized with respect to the 
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corresponding first yield values, i.e., �W�,) � �)GG/�W�,) , �W�,? � �?GG/�W�,? and XW� � LGG/LW� . 

The horizontal lines in the graphs indicate the first yield loads (i.e., the condition �W�,) + �W�,? +
XW� � 1) obtained with the analytical solution and GNA. These results deserve the following 

remarks: 

 (i) Overall, the analytical formulas provide reasonably accurate results, particularly for IPE500. 

In fact, except for HEB300 and =̅� � 2, accuracy is only lost for �EF values above the yield 

lines. It should be also noted that the first yield lines in each graph are very close, with the 

single exception of the HEB300, =̅� � 2 � � 45º case.  

 (ii) The comparison of the GNA solutions for =̅� � 1 and 2 shows that the latter cases involve 

lower bimoments, as predicted by Eq. (5) — recall that LGG is inversely proportional to �7. 

 (iii) The GMNA curves attain their maxima naturally above the yield lines, but in a few cases quite 

close. At the maxima, a comparison of the GMNA and GNA stress resultants shows that they 

are quite close (sometimes virtually coincident), even if for the GMNAs, in general, �W�,? is 

higher, while �W�,) and XW� are lower. Therefore, not all GMNA stress resultants increase with 

respect to those of a GNA. 

 (iv) It should be noted that the bimoment cannot be generally discarded, at least for the IPE500. 

 

3.2 Beams with 
) � 1, 
? � �0.5 

Consider the 
) � 1, 
? � �0.5 case, which allows two different boundary conditions: SSySSz 

and SSyCSz. Only IPE500 sections are investigated, since they are more affected by LT buckling 

(smaller S values). 

 

As in the previous section, Fig. 4 displays the analytical solution (5) and “exact” GNA/GMNA 

results, for =̅� � 1, 2 and � � 11º, 45º, 79º. The normalized stress resultants displayed concern 

the most stressed cross-section, according to the function �W�,) + �W�,? + XW�.  It should be 

remarked that the curves in some cases have “stepped” configuration due to a change in the most 

stressed cross-section in consecutive load increments. Note that, comparing the two support 

schemes, the analytical solution provides the same �W�,) and �W�,? curves but different XW�, since 

the lengths are different for the same slenderness. The following conclusions can be drawn from 

these results: 

 (i) Concerning the analytical solution, (I) it does not lead to accurate �W�,?,as it overestimates �?GG, (II) as in the benchmark case, �)GG ≈ �) up until the maximum GMNA load and (III) the 

bimoment is quite accurately captured for SSyCSz, while it is greatly overestimated for 

SSySSz. These differences explain why the first yield (horizontal) lines corresponding to the 

analytical solution are lower (sometimes considerably) than those calculated from GNAs. 

 (ii) Comparing the GNA results for the two supports, both �?GG and LGG are higher for SSyCSz 

(higher as �EF increases), while �)GG is very similar except for � � 11º, in which cases it is 

lower for high �EF  and well beyond the GMNA maximum loads. This explains why the 

GMNA maximum loads are lower for SSyCSz. 
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Figure 3: The benchmark case (GNA and GMNA) 
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Figure 4: GNA and GMNA of IPE500 beams with 
Z � 1 and 
[ � �0.5 
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 (iii) Comparing the GMNA and GNA stress resultants at the maxima shows that �W�,) are virtually 

coincident, �W�,?  are very close but sometimes slightly higher for GMNA and XW�  can be 

slightly higher or lower. Once more, the bimoment cannot be discarded. 

 

Fig. 5 summarizes the maximum loads obtained so far, in �)-�? space, together with the cross-

section plastic interaction �)7 + �? � 1 of Eurocode 3. Naturally, the benchmark case leads to the 

lowest loads, but there is some difference between the two support conditions for 
) � 1, 
? �
�0.5, with SSyCSz leading to the lowest maximum loads (between 2 and 9 % lower), due to the 

increased moments and bimoments, as already pointed out. 

 

 
Figure 5: GMNA maximum loads 

 

The results presented in this section show that, even though the boundary conditions are reflected 

in =̅� , this is not sufficient to characterize the problem, as additional effects are developed. In fact, 

when comparing the SSyCSz and SSySSz cases for 
) � 1, 
? � �0.5, even though the former is 

statically indeterminate, it leads to lower strengths owing to higher �?GG and LGG. 
 

4. GMNIA under biaxial bending 

The “true” buckling strength is assessed in this section, accounting for geometric imperfections 

and residual stresses (see Fig. 1). GMNIA results for all the cases shown in Fig. 3 (excluding 
) �
�1) are presented, considering =̅� � 0.5, 1.0, 1.5 and, for IPE500, also =̅� � 2.0.  
 

The results are grouped in Fig. 6, as a function of the cross-section type and 
) value. The exact 

cross-section interaction curve is also provided. In some cases the strength falls above �EF and 

was capped at this value. These results prompt the following remarks: 

 (i) Almost all curves exhibit a pronounced convexity, even if in some cases double curvature is 

observed. Therefore, in these cases, a simple linear interaction formula �)/�� + �? � 1 

can be used, as it generally falls on the safe side. 
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Figure 6: GMNIA maximum loads 

 

 (ii) For the same slenderness, unsurprisingly, the “benchmark” case is the most detrimental, 

generally followed by the 
) � 1, 
? � �0.5 cases, as they correspond to the lowest ��  

values. The remaining cases have very similar curves, particularly for HEB300. However, it 

is worth noting that, for IPE500 and 
) � �0.5, some scatter is observed, with upper/lower 

bounds corresponding to CSySSz 
? � �0.5 and SSySSz 
? � 1, respectively. 

 (iii) As previously concluded, out of the two 
) � 1, 
? � �0.5 cases, it is the SSyCSz support 

scheme that leads to the lowest strengths, thus using the values of the simply supported case 

is not on the safe side. The remaining cases with the same bending moment diagrams are 

discussed next, but it should be noted that the differences are more significant for the IPE500 

section. 

 (iv) For 
) � 
? � �0.5, the SSySSz and SSyCSz virtually match and lead to the lowest strength. 

However, as in the previous case, SSyCSz provides lower (but in this case only slightly) 

values. For CSyCSz a very slight strength increase is observed (most notably for IPE500 and =̅� � 1.5), while CSySSz shows the highest values, thus once more CSz leads to lower values 
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when compared with SSz. It is also worth noting that the CSy cases have a significant increased 

strength over the SSy ones with the same “z” supports. 

 (v) For 
) � �0.5, 
? � 1, there is a significant difference between the two supports, with 

SSySSz leading to significant lower strengths. 

 (vi) For 
) � 
? � 0, the cantilever case exhibits slightly higher values and the simply supported 

results can be safely adopted. 

 (v) The curvature of the interaction curves can be categorized as follows (smaller to higher): (I) 

cases with 
? � 1, (II) cases with 
) � 
? ≠ 1 and (III) 
) � 1, 
? � �0.5. 

Finally, it is worth remarking that, for 
) � �0.5, SSySSz with the same slenderness and bending 

moment diagrams generally leads to lower strength values (for IPE500 sometimes too safe). For 

end-supported beams with the same bending moment diagrams, (i) for the same “y” boundary 

conditions, CSz leads to lower strength values than SSz, and (ii) for the same “z” boundary 

conditions, CSy leads to higher strength values than SSy. Finally, in each graph, the lowest values 

always correspond to 
? � 1 (which implies SSz supports). 

 

5. A note on the Eurocode 3 formulas 

Presently, there are two sets of formulas for beam-columns in Eurocode 3 Part 1-1 (CEN 2005), 

the so-called “method 1” and “method 2” formulas. Without the partial factor for resistance, for 

the case of biaxial bending, they can be cast as 

 

 
])) 6

^,- �) + ])?�? ≤ 1,
]?) 6

^,- �) + ]??�? ≤ 1.  (6) 

 

The cross-section resistance at the member ends must also be checked, since Eqs. (6) can yield 

strength values above this limit. These formulas were obtained from the results of numerical 

studies concerning SSySSz single span members. For beams with compact sections and susceptible 

to torsional deformations, it can be shown that one obtains 

 

 

])) � _max _ 6
U� , 1 � <U�16Ab,-23c0����

7^,- dd16 ,
])?  � �.efg�/O�O�

hijk/ c.lm
O�O�,61ncQO�onRp,-q3c0g�

<q3�rstAu,- v
,

]?) �  �.e/O�
O�

hijk/ c.lm
O�O�,610<O�onAp,-q3cg�g�

<q3�rsc.nAu,-wg� v
,

]?) � ��?,

 (7) 

 

for method 1 and  
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])) � ��),    
])? � 0.6��? ,
]?) � min<0.6 + =̅? , 1A ,
]?? � ��? ,

 (8) 

 

for method 2, where �� are the standard equivalent uniform moment factors pertaining to each 

moment diagram, =̅? is the non-dimensional slenderness for flexural buckling about the weak axis, z{ � |��,{/|W�,{ ≤ 1.5, }� � 1 � ~/T) ≥ 0 and =̅�  is the non-dimensional slenderness for LT 

buckling due to uniform bending. 

 

Although the method 1 formulas are quite involved, it should be highlighted that only the effect of 

the �? shape is considered, through ��? (the effect of the �) shape is accounted for in =̅�  and 

�� ). This effect is beneficial as ��? decreases, as is the case of 
? � �0.5, which leads to ��? �0.685. In �)-�? space, the end points are given by 

 

 

_�) � 0, �? � 6
�.efg� /U�

U�d    and    <�) � �� , �? � 0A,
��) � 0, �? � 6

fg��    and    k�) � ^,-
�.e /U�

U� , �? � 0v ,
 (9) 

 

and it should be noted that ��? < 1 allows �? > 1. 

 

The method 2 interaction formulas are linear in �)-�?  space. The second equation generally 

governs (if =̅? ≥ 0.4 it always governs) and its end points are given by 

 

 ��) � 0, �? � 6
fg��    and   <�) � �� ,     �? � 0A. (10) 

 

Once again, only ��? is accounted for and a change of sign of the bending moment diagram has a 

beneficial effect (��? < 1). Also note that the cross-section geometry (e.g. HEB or IPE) is not 

considered in this method (no z{ and }�  parameters). For the cases addressed in this paper ��? �
0.6 + 0.4
? ≥ 0.4 if the ends are laterally braced, otherwise ��? � 0.9. 

 

Fig. 7 compares the GMNIA results for 
) � �0.5 with the strength predictions of the Eurocode 

3 methods 1 and 2. Only the IPE500 case is considered. For method 1, the beam lengths were taken 

as those of the SSz case. The left graph shows the results for 
? � �0.5 and all slenderness values, 

considering the code coefficients, whereas the right graph includes 
? � 1 but focuses on =̅� �1.0, to assess the influence of ��?. 

 

The left graph shows that both methods can yield unsafe strength predictions, particularly method 

2. On the other hand, method 1 can lead to excessively safe values. The right graph shows that 

using ��? � 1 (
? � 1) generally leads to safe (in many cases excessively safe) strength values 

but, for method 1, some unsafe results are also obtained for SSySSz 
? � 1. Note that using ��? �1 in method 2 leads to the linear interaction �)/�� + �? � 1. 
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Figure 7: Comparison between GMNIA maximum loads and Eurocode 3 strength predictions 

 

6. Concluding remarks 

This paper presented the results of a numerical investigation concerning the lateral-torsional 

buckling behavior and strength of compact steel I-section beams subjected to biaxial bending due 

to end moments or forces, having various support conditions (namely other than simply supported). 

Although only a limited number of cases was considered, the following remarks deserve to be 

highlighted: 

 (i) The new Eurocode 3 approach for simply supported members under major axis bending 

provides quite accurate and generally safe strength values for beams with other support 

conditions, provided that =̅? is calculated for a simply supported member with the same =̅�  

value. 

 (ii) GNAs and GMNAs analyses show that, for biaxial bending, significant second-order 
bimoments can be developed. These bimoments tend to decrease for longer beams and wide 

flange sections. While the major axis moment is not significantly altered, the minor axis one 

can also suffer an amplification. However, even for the benchmark case of simply supported 

beams subjected to uniform bending, this amplification is much lower than that of beam-

columns. 

 (iii) Even though the boundary conditions are reflected in =̅� , additional effects need to be 

accounted for. For instance, for SSyCSz and SSySSz IPE500 beams with 
) � 1, 
? � �0.5, 

for the same slenderness, the former leads to lower strengths owing to higher �?GG and LGG. 
This case shows that the development of accurate interaction formulas should not be 

exclusively based on the analysis of simply supported members. 

 (iv) Since the strength curves for biaxial bending generally exhibit a pronounced convexity, a 

simple linear interaction �)/�� + �? � 1 can be used. 

 (v) The Eurocode 3 methods 1 and 2 can yield unsafe strength predictions even for the simply 

supported cases. Method 2 leads to more unsafe strength predictions for the cases considered. 

Method 1 can lead to excessively safe values. However, using ��? � 1 (
? � 1) generally 

leads to safe (in many cases excessively safe) values. 

One final word to mention that work is in progress to expand the present study to other loading 

and support cases. 

 



 13

Acknowledgments 

This work is part of the research activity carried out at Civil Engineering Research and Innovation 

for Sustainability (CERIS) and has been funded by Fundação para a Ciência e a Tecnologia (FCT) 

in the framework of project UIDB/04625/2020.  

 

References 
Boissonnade, N., Greiner, R., Jaspart, J., Lindner, J. (2006). Rules for Member Stability in EN 1993-1-1. Background 

Documentation and Design Guidelines, ECCS, Brussels, Belgium. 

CEN (2005). EN 1993-1-1:2005, Eurocode 3: Design of Steel Structures — Part 1-1: General Rules and Rules for 

Buildings. Belgium, Brussels: CEN. 

Gonçalves, R., Camotim, D. (2004). “On the application of beam-column interaction formulae to steel members with 

arbitrary loading and support conditions.” Journal of Constructional Steel Research, 60(3-5), 433-450. 

Gonçalves, R. (2019). “An assessment of the lateral-torsional buckling and post-buckling behaviour of steel I-section 

beams using a geometrically exact beam finite element.” Thin-Walled Structures, 143, 106222. 

Gonçalves, R. (2020). “On the Lateral-Torsional Elastic Post-Buckling and Strength of Channel Steel Beams.” 

International Journal of Structural Stability and Dynamics, 20(12), 2050135. 

Gonçalves, R., Ritto-Corrêa, M. (2022). “On the modelling of simple supports in geometrically exact thin-walled 

beam finite elements using a rotation vector parametrization of finite rotations.” Thin-Walled Structures, 172, 

108922. 

Greiner, R., Taras, A. (2010). “New design curves for LT and TF buckling with consistent derivation and code-

conform formulation.” Steel Construction, 3(3), 176-186. 

Kaim, P. (2004). Spatial buckling behaviour of steel members under bending and compression. PhD thesis, Technische 

Universitat Graz. 

Ofner, R. (1997). Traglasten von Staben aus Stahl bei Druck und Biegung. PhD thesis, Technische Universitat Graz. 

Taras, A., Greiner, R. (2010). “New design curves for lateral–torsional buckling – proposal based on a consistent 

derivation.” Journal of Constructional Steel Research, 66(5), 648-663. 

Ziemian, R. (2010). Guide to Stability Design Criteria for Metal Structures. John Wiley & Sons. 


