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Abstract 

This paper presents an accurate and computationally efficient beam finite element based on the so-

called geometrically exact approach, specifically tailored for non-prismatic beams with thin-

walled rectangular section. The element can handle non-linear tapered geometries, initially bent 

and/or twisted configurations, eccentric loads (loads offset from the centroid), torsion-related 

secondary (through-thickness) warping and arbitrary primary (membrane) warping, the latter to 

capture the complex stress field characteristic to tapered and skewed members. To show the 

capabilities of the proposed finite element, a set of numerical tests are presented. These tests 

concern 2D/3D linear, linearized buckling and large displacement analyses. For comparison 

purposes, results taken from the literature or obtained using refined meshes of standard shell finite 

elements are used. 

 

 

1. Introduction 

Although the structural efficiency and aesthetic qualities of non-prismatic thin-walled beams are 

widely recognized, their numerical modelling is still quite challenging, a fact that hinders their 

more widespread use. Such beams can be adequately modelled using shell finite elements, but if 

local buckling is not a potential failure mode, beam finite elements should be preferable, as they 

involve much less DOFs and provide structurally meaningful results, such as stress resultants. 

However, there are several non-trivial effects pertaining to non-prismatic members that must be 

properly accounted for, namely: (i) variable cross-sections generate stress distributions that can 

deviate significantly from the standard prismatic beam theory solution and the structural behavior 

may not be adequately captured by dividing the beam into small prismatic elements, (ii) pre-curved 

beams exhibit torsion-bending and extension-bending couplings, and (iii) pre-twisted beams are 

characterized by extension-twist coupling. Although there is a considerable amount of research in 

this field, it has concerned mostly the lateral-torsional buckling behavior of I-section beams (see 

e.g. Kitipornchai & Trahair 1972, Ronagh et al. 2000, Andrade & Camotim 2005, Trahair 2014) 

and the linear in-plane behavior of thin tapered strips (Hodges et al. 2008, 2010, Auricchio et al. 

2015, Balduzzi et al. 2016). 

 

In a series of recent papers (Gonçalves 2023a, 2023b, 2024), the author proposed beam finite 

elements that extend the so-called “geometrically exact beam theory”, pioneered by Reissner 
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(1972, 1973) and Simo (1985), to non-prismatic beams with thin-walled rectangular section. These 

elements can recover the peculiar stresses in tapered/skewed elements, while handling large spatial 

displacements and rotations, non-linear taper, pre-twist/bending, torsion-related secondary 

warping and arbitrary primary (membrane) warping. The present paper summarizes and unifies 

the work carried out so far and extends it to more general cross-sections (with more walls). The 

efficiency of the proposed finite element is assessed in a series of numerical tests concerning 

2D/3D linear, linear stability (linearized buckling) and large displacement analyses. For 

comparison purposes, results taken from the literature or obtained using refined meshes of standard 

shell finite elements are provided. 

 

2. The geometrically exact approach for non-prismatic beams 

 

2.1 Fundamental equations 

Consider the narrow rectangular non-prismatic beam shown in Fig. 1, where a parent element-type 

approach (the reference configuration) is adopted, with 𝑋2, 𝑋3 ∈ [−1,1],   𝑋1 ∈ [−𝑡/2, 𝑡/2], 
where 𝑡 is the cross-section thickness and 𝑋3 corresponds to the beam longitudinal axis. The initial 

configuration is mapped through 

 

 𝒙0 = 𝒓0 + 𝚲0𝒍0, (1) 

 

using the position vector 𝒓0(𝑋3) of the centroid C, the cross-section rotation tensor 𝚲0(𝑋3) and 

the cross-section co-rotational vector 

 

 𝒍0 = 𝑋1𝑬1 + (1 + 𝜏)𝑋2𝑬2, (2) 

 

where 𝜏(𝑋3) is the taper function. The current configuration is mapped similarly, using 

 

 𝒙 = 𝒓0 + 𝒖̂(𝑋3)⏟      
𝒓

+ 𝚲̂(𝑋3)𝚲0⏟      
𝚲

(𝒍0 + 𝒍̂)⏟    
𝒍

, (3) 

 

in which 𝒖̂(𝑋3) is the displacement of point C and 𝒍̂ allows cross-section warping (displacements 

along 𝚲𝑬3) through  

 

 𝒍̂ = (𝝎T𝒑̂)𝑬3, (4) 

 

defining amplitudes 𝑝̂𝑗(𝑋3)  and pre-defined warping functions 𝜔𝑗(𝑋1, 𝑋2) , stored in a vector 

format. The rotation tensors are parametrized using the rotation vector (𝜽0 for 𝚲0 and 𝜽̂ for 𝚲̂), 

since this allows additive updates and a straightforward geometric interpretation of rotations 

(Cardona & Géradin 1988, Ritto-Corrêa & Camotim, Gonçalves et al. 2010). The independent 

kinematic parameters are grouped as follows 

 

 𝝓̂ = [
𝒖̂
𝜽̂
𝒑̂
]. (5) 
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Figure 1: Reference, initial and current configurations of the non-prismatic beam 

 

The three deformation gradients shown in the figure are given by 

 

 𝑭 =
d𝒙

d𝑿
= 𝚲𝑮,   𝑭0 =

d𝒙0

d𝑿
= 𝚲0𝑮0,   𝑭̂ =

d𝒙

d𝒙0
, (6) 

 

with 

 

 𝑮 = ∑ 𝒈𝑖⊗𝑬𝑖
3
𝑖=1 ,   𝑮0 = ∑ 𝒈0𝑖⊗𝑬𝑖

3
𝑖=1 , (7) 

 

hence vectors 𝒈𝑖 and 𝒈0𝑖 are back-rotations (by 𝚲T and 𝚲0
T) of the push-forwards of vectors 𝑬𝑖. 

Since 𝑭̂ = 𝑭𝑭0
−1, the back-rotated Green-Lagrange strains can be written as 

 

 
𝑬̂ =

1

2
𝚲0
T( 𝑭̂T𝑭̂ − 𝟏 )𝚲0 =

1

2
(∑ (𝒈𝑖 ⋅ 𝒈𝑗)𝑨𝑖𝑗
3
𝑖,𝑗=1 − 𝟏 ),

𝑨𝑖𝑗 = 𝑮0
−T𝑬𝑖⊗𝑬𝑗𝑮0

−1.
 (8) 

 

It turns out that 𝑮0 has only five non-null components, viz. 

 

 𝐺11
0 = 1, 𝐺22

0 = 1 + 𝜏, 𝐺𝑗3
0 = 𝒈03 ⋅ 𝑬𝑗 , (9) 

 

with 𝑗 = 1, 2, 3, thus 𝑮0
−1 has an analytical form. After some algebra, it is possible to arrive at the 

non-null strain components  

 

 

𝐸̂13 =
1

2
(𝝎,1

T  𝒑̂ +
𝑬1∙𝒈̂3

∗

𝐺33
0 ) ,

𝐸̂23 =
1

2
( 
𝝎,2
T 𝒑̂

𝐺22
0 +

𝑬2∙𝒈̂3

𝐺33
0 ) ,

𝐸̂33 = −
𝐺13
0

𝐺33
0 𝝎,1

T 𝒑̂ −
𝐺23
0

𝐺22
0 𝐺33

0 𝝎,2
T 𝒑̂ +

𝑬3⋅𝒈̂3

𝐺33
0 +

𝒈̂3⋅𝒈̂3

2(𝐺33
0 )

2 ,

 (10) 
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where 𝑓,1 =
d𝒇

d𝑋1
 and 𝑓,2 =

d𝒇

d𝑋2
 (𝑓′ = d𝒇/d𝑋3 will be used next), and 

 

𝒈̂3 = 𝚲
T𝑭𝑬3 − 𝚲0

T𝑭0𝑬3 = 𝚪̂ + 𝑲̂ × 𝒍̂
⏞  
≈0

+ 𝑲̂ × 𝒍0 +𝑲0 × 𝒍̂ + (𝝎
𝑇𝒑̂′)𝑬3,

𝒈̂3
∗ = 𝒈̂3 − (𝑬1⊗𝑬1)(𝑲0 × 𝒍̂),

𝚪̂ = (𝚲T𝒓′ − 𝑬3) − (𝚲0
T𝒓0
′ − 𝑬3),

𝑲0 = axi(𝚲0
T𝚲0
′ ),

𝑲̂ = axi(𝚲0
T𝚲̂T𝚲̂′𝚲0).

 (11) 

 

The use of 𝒈̂3
∗ , which replaces 𝒈̂3  in 𝐸̂13 , is required to eliminate a recursive relation in the 

definition of the torsion-related warping function. Indeed, with the simplification and using the 

Kirchhoff constraint, one readily obtains  

 

 𝐸̂13 = 0 →  𝜔 =
𝑋1𝑋2

𝐺33
0 . (12) 

 

A standard Saint Venant-Kirchhoff material law is adopted, hence the second Piola-Kirchhoff 

stresses 𝑺̂ are obtained from 

 

 𝑺̂ = 𝑪𝑬̂,   𝑺̂ = [

𝑆̂33
𝑆̂13
𝑆̂23

],   𝑬̂ = [

𝐸̂33
2𝐸̂13
2𝐸̂23

] ,   𝑪 = [
𝐸 0 0
0 𝐺 0
0 0 𝐺

], (13) 

 

with Young’s modulus 𝐸 and shear modulus 𝐺. This leads to the equilibrium equations 

 

 𝛿𝑊 = −∫ 𝛿𝑬̂T 𝑺̂ 𝐽0d𝑉𝑉
+ 𝛿𝒙 ⋅ 𝑸 = 0, (14) 

 

for the beam reference volume 𝑉, the change in volume 𝐽0 = det(𝑭0), the concentrated forces 𝑸 

and the work-conjugate position variations 𝛿𝒙. 

 

2.2 The finite element 

It is possible to write the equilibrium equations and their linearization explicitly in terms of the 

parameters in 𝝓̂ using the following vector-matrix forms 

 

 

𝛿𝑬̂ = 𝚵𝐷𝑬̂ [
𝛿𝝓̂

𝛿𝝓̂′
] ,

𝑺̂TΔ𝛿𝑬̂ = [
𝛿𝝓̂

𝛿𝝓̂′
]

𝑇

𝚵𝐷2𝑬̂(𝑺̂) [
Δ𝝓̂

Δ𝝓̂′
] ,

𝛿𝒙 = 𝚵𝐷𝒙𝛿𝝓̂,

Δ𝛿𝒙 = 𝛿𝝓̂𝑇𝚵𝐷2𝒙Δ𝝓̂,

 (15) 
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where the auxiliary matrices 𝚵(.) are provided elsewhere (Gonçalves 2024) and are not displayed 

here due to lack of space. 

 

A standard isoparametric approach is followed, approximating 𝒖̂0, 𝒖̂, 𝜽̂0, 𝜽̂ and 𝒑̂ using standard 

Lagrange polynomials. Besides the torsion-related warping function (12), arbitrary mid-line 

warping can be included, using Legendre polynomials of degree 2 and above — see Fig. 2, the 

constant and linear polynomials are linearly dependent to the cross-section motions. Therefore, an 

element with 𝑛 nodes and 𝑗 warping modes has 𝑛(6 + 𝑗) DOFs. 

 

 
Figure 2: Legendre polynomials of degree 2 to 5 

 

The element interpolation is written as 𝝓̂𝑒 = 𝝍(𝑋3)𝒅𝑒, where matrix 𝝍 collects the interpolation 

functions and vector 𝒅𝑒 collects the nodal values of the kinematic parameters. This leads to the 

element internal and external force vectors and tangent stiffness matrix 

 

 

(𝒇𝑖𝑛𝑡)𝑒 = ∫ [
𝝍

𝝍′
]
T

𝚵𝐷𝑬̂
T  𝑺̂ 𝐽0d𝑉𝑉

,

(𝒇𝑒𝑥𝑡)𝑒 = 𝝍
T𝚵𝐷𝒙
T 𝑸,

𝑲𝑒 = ∫ [
𝝍

𝝍′
]
T

(𝚵𝐷2𝑬̂(𝑺̂) + 𝚵𝐷𝑬̂
T 𝑪𝚵𝐷𝑬̂) [

𝝍

𝝍′
] 𝐽0d𝑉 −𝝍

T𝚵𝐷2𝒙𝑉
𝝍.

 (16) 

 

Locking is eliminated using reduced Gauss quadrature, with 2 × 𝑘 × (𝑛 − 1) along 𝑋1 × 𝑋2 × 𝑋3, 
where 𝑘 is the greater of 3 and the maximum Legendre polynomial order minus one. It is worth 

remarking that the MATLAB (2018) implementation of the proposed finite element is very fast. 

For instance, using ten three-node elements and five warping modes (𝑛 = 3, 𝑗 = 5), with an Intel 

Core i7-8550U CPU @ 1.80 GHz, each iteration takes about 0.06 seconds. 

 

3 Numerical examples 

Consistent units are used, with 𝐸 = 105  and 𝜈 = 0.25.  The models using the proposed 

geometrically exact element always involve uniform discretizations along the length. The error is 

calculated with 𝜖 = |(𝑎 − 𝑎𝑟𝑒𝑓)/𝑎𝑟𝑒𝑓| , where 𝑎𝑟𝑒𝑓  is the reference solution, obtained using 

refined meshes of standard 2D bilinear solid or MITC shell finite elements (Bathe). Except where 

stated, the geometries are as defined in Fig. 3. 
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Figure 3: Linearly tapered cantilever geometries. 

 

3.1 In-plane behavior 

Figs. 4 and 5 concern geometrically linear analyses of beams undergoing in-plane displacements. 

In Fig. 4 (linearly tapered straight cantilevers) the reference solutions correspond to (i) 3932160 

bilinear elements (Auricchio et al. 2015), for 𝛼 = −0.05, and (ii) 18130 MITC-9 shell elements 

(Gonçalves 2023a), for 𝛼 = −1. As for Fig. 5 (curved and skewed cantilever), the reference 

solution was obtained with 262144 bilinear elements (Auricchio et al. 2015). Both these figures 

show that, naturally, the 𝑛 = 4  element converges at a faster rate, leading to quite accurate 

displacements for converged meshes: (i) 𝜖 < 0.01 % for 𝛼 = −0.05, (ii) 𝜖 < 3.0 % for 𝛼 = −1 

and (iii) 𝜖 < 0.08 %  for the skewed case. Note also that the peculiar stress distributions are 

adequately captured if at least four warping modes are included in the analysis (𝑗 ≥ 4). 

 

A large displacement analysis is carried out for the curved and tapered beam in Fig. 6. The graph 

shows that, while the horizontal displacement increases with the load, the vertical one increases 

only up to approximately a 500 load and then decreases. It is concluded that ten 𝑛 = 4 beam 

elements provide very accurate results even for very large displacements. However, there is a slight 

improvement if four warping modes are included in the analysis (𝑗 = 4).  

 

3.2 Linear torsional behavior 

The adequacy of the beam element for capturing the torsional behavior in the geometrically linear 

case is assessed in this section. First, linearly tapered straight cantilevers subjected to a free end 

torque are analyzed. The results for different taper ratios are presented in Fig. 7. The reference 

solutions were obtained with refined meshes of MITC-9 shell elements (4000 to 10950 elements, 

for 𝛼 = −0.05 and −0.5, respectively). Once again, the superior convergence properties of the 

𝑛 = 4 element are clearly observed. The errors are quite small for 𝛼 = −0.05 (about 0.5%) but 

increase with the taper ratio, reaching 4.1% for 𝛼 = −0.5. This can be at least partly explained by 

the fact that, for 𝛼 = −0.5, the reference (shell) solution exhibits a slight transverse bending near 

the support which cannot be captured with the proposed element. 

 

Fig. 8 displays the case of a curved and tapered beam subjected by an eccentric out-of-plane force. 

At least five beam elements including the torsion-related warping function (12) are used, to ensure 

modeling accurately the initial configuration. This makes 𝑛 = 3, 4  lead to converged and very 

accurate values for the range shown in the graph, but at least 10 elements are required for 𝑛 = 2. 

Although not shown in the figure, it is remarked that the warping function of the prismatic beam 

theory (𝐺33
0 = 1 in Eq. (12)) leads to completely wrong results, as one obtains 𝜖 = 50.8 % even 

with ten 𝑛 = 4 elements. 
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Figure 4: In-plane geometrically linear analysis of tapered cantilevers 
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Figure 5: In-plane geometrically linear analysis of a skewed and curved beam 

  

 

 
Figure 6: In-plane geometrically non-linear analysis of a curved and tapered beam 

 

3.3 Linear stability analysis 

Attention is now turned to the calculation of lateral-torsional bifurcation loads and buckling 

modes, based on the linear stability analysis concept (pre-buckling deflections are discarded). In 

all examples, the results obtained with the proposed element correspond to 𝑛 = 4 and  𝑗 = 1 (the 

torsion-related warping mode), as adding more modes does not change the results obtained. The 

meshes adopted correspond to converged results. 
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Figure 7: Linear torsion of tapered cantilevers 

 

 
Figure 8: Linear out-of-plane bending-torsion of a curved and tapered cantilever 

 

Fig. 9 shows the critical lateral-torsional buckling modes and the error in the corresponding 

bifurcation load values, for straight and curved tapered cantilevers subjected to end loads. It can 

be observed that the buckling modes match very accurately and that the error in the bifurcation 

loads falls above 2 % only for the highest taper ratio in each case. Note that, in the curved case, 

the critical buckling mode shapes changes significantly when the load direction changes and that 

the critical load is much higher for loads directed away from the support. 

 

3.4 Large 3D displacements 

Large spatial displacements are considered in this section. All beam results correspond to 𝑛 = 3 

and, except where indicated, 𝑗 = 1 i.e. only the torsion-related warping deformation mode is 

included in the analyses, as adding modes does not change the results. 

 

The extension-twist coupling in linearly tapered pre-twisted beams is examined in Fig. 10. The 

cantilevers are pre-twisted by 90º and are acted by an axial force, causing the beams to untwist up 

to 45º. For the maximum rotation, the errors vary between 2.5 and 4.0 %, except for the highest 

taper ratio (𝛼 = −0.5), which evidences a much higher value, 𝜖 = 16.3 %. This can be once more 
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Figure 9: Lateral-torsional critical bifurcation loads and buckling modes for tapered and curved beams 

 

attributed to cross-section transverse bending in the shell model (not captured by the beam model), 

as increasing the thickness to 0.5 lowers the error to 1.2 %. It is worth noting that increasing 𝛼 

initially leads to a softener structural response — 45º is achieved for lower loads — but the trend 

is then inverted. This is due to two competing effects that increase with ℎ𝐴 : (i) the torsional 

stiffness and (ii) the untwisting effect due to axial force. 
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Figure 10: Extension-twist coupling in pre-twisted linearly tapered beams 

 

A set of large displacement problems is presented in Fig. 11. In all cases, ℎ𝐵 = 0.5 and 𝐿 = 10. 

The thickness is set to limit transverse bending: 𝑡 = 0.1 for 𝛼 = −0.05, 𝑡 = 0.2 for 𝛼 = −0.2 and 

𝑡 = 0.5 for 𝛼 = −0.5. In the load-displacement graphs, a logarithmic scale is used in the vertical 

axes to allow a clear perception of the load-displacement path. In all cases an excellent agreement 

with the reference (MITC-4 shell) solutions is observed, even for very large displacements and 

finite rotations. However, the accuracy naturally decreases as the taper ratio increases, and it is 

necessary to add warping deformation modes. 

 

3.5 Beams with multiple walls  

The proposed finite element can be combined to model beams with several thin walls. In this case 

the warping function for all walls must be calculated for a unit twist, which requires substituting 

(12) by  

 

 𝜔 =
𝑋1𝑋2𝐺22

0

𝐺33
0 . (17) 

 

To illustrate this approach, the cruciform tapered cantilever beam shown in Fig. 12 is analyzed. In 

the figure, ℎ𝐶  is the total width of the horizontal walls, assumed constant. Ten elements with 𝑛 =
4, 𝑗 = 1 are employed. 

 

For the linear analysis, the error in the vertical displacement of the free end section centroid equals 

𝜖 = 0.4 %. The associated critical bifurcation load is subsequently calculated and is also very 

accurate (𝜖 = 0.13 %). As shown in the figure, buckling is lateral-torsional. 

 

4 Concluding remarks 

This paper summarized recent work in the field of geometrically exact beam finite elements for 

thin-walled non-prismatic beams (Gonçalves 2023a, 2023b, 2024) and showed that the proposed 

element can be extended to more general cross-sections (with several walls). The element is 

capable of handling non-linear taper, initially bent-twisted configurations and eccentric loads. 

Owing to the geometrically exact description adopted, the element allows obtaining very accurate 

(i) lateral-torsional bifurcation loads and (ii) equilibrium paths up to very large displacements and  
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Figure 11: Large spatial displacement analyses of curved and twisted beams 
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Figure 12: Linear and linear stability analyses of a tapered cruciform beam 

 

rotations. Furthermore, the element allows including hierarchical primary (membrane) warping 

functions, besides the standard torsion-related secondary (through-thickness) warping, which 

makes it possible to capture accurately the peculiar stresses that develop in tapered and skewed 

beams. To demonstrate the performance of the proposed approach, several numerical tests were 

presented, clearly showing that the beam element allows obtaining accurate solutions with a very 

small computational cost, even for members with a high taper ratio and initial curvature. 
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