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Abstract 
Cross-frames are critical for the stability of steel I-girder bridges during construction and play an 
important role in completed bridges. Historically, cross-frame brace locations have been regions 
of fatigue concerns, and each brace requires significant handling and processing during fabrication. 
The braces represent one of the most expensive bridge components per unit weight. Therefore, 
there are major benefits to minimizing the number of cross-frames in a bridge in terms of economic 
and structural performance. Lean-on bracing concepts reduce the number of cross-frames on a 
bridge by replacing full cross-frames in certain bracing lines with top and bottom struts, allowing 
a cross-frame to brace several girders. Lean-on bracing concepts were developed for the Texas 
Department of Transportation (TxDOT) in the early 2000s. Previous studies developed design 
guidelines, but recent applications of lean-on bracing in TxDOT bridge designs demonstrated the 
need for improved efficiency and clarity. The stiffness and strength of a given line of bracing are 
functions of the number and location of cross-frames in the line, as well as the specific cross-frame 
geometry (X, K, or Z-shapes). While previous lean-on bracing equations were applicable to 
systems with one X-shaped cross-frame positioned in an exterior bay, derivations and model 
validation, have been completed to extend the application of the design guidance. Derived 
equations with simplified design expressions will be discussed in terms of stability implications, 
with consideration for which line(s) of bracing control based on design moments and distribution 
of cross-frames along the span.  
 
1. Introduction 
I-shaped girders are often utilized in steel bridge systems as an efficient and economical solution 
in a wide range of bridge applications. The exceptional strength-to-weight properties of steel make 
it a preferable material, and steel girders provide significant flexibility in terms of shipping, as the 
bridge girders can be fabricated in shorter lengths, shipped to the site, spliced together, and quickly 
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erected. However, the high strength-to-weight ratio can lead to slender elements and systems, 
which may prove to be troublesome during erection and other construction phases when the 
bracing conditions are highly variable. During construction stages, the steel section alone generally 
supports the full load. Construction stages are generally critical for lateral-torsional buckling 
(LTB), which is a limit state that involves lateral movement of the compression flange and twist 
of the section, as depicted in Figure 1. Stability in the finished bridge is rarely a concern because 
the cured concrete deck provides continuous lateral and torsional bracing to the composite system.  
 

 
Figure 1. Lateral-Torsional Buckling. Adapted from Helwig and Wang (2003). 

 
An increase in LTB capacity is achieved by providing adequate bracing. Effective beam bracing 
can be achieved by either restraining lateral displacement of the critical compression flange (lateral 
bracing), or by controlling the twist of the section (torsional bracing). Once the composite concrete 
deck has cured, the deck and shear studs provide continuous lateral and torsional restraint to the 
girder top flange and additional stability to the bottom flange. As a result, conventional LTB is not 
typically a concern in the completed bridge. As alluded to above, the critical stages for LTB are 
typically during erection and deck placement. In bridge I-girder systems, cross-frames and 
diaphragms commonly serve as stability braces during construction to enhance the LTB resistance 
of the girders. Since cross-frames and diaphragms restrain the twist of the cross-section at discrete 
locations along the length of the bridge girder, they are categorized as point (discrete) torsional 
braces. Though the braces are necessary for girder stability and other functions, such as restraining 
fascia girders from torsion applied by deck overhang brackets, they introduce some complexities 
into the design and require strategic placement along the length and width of the framing system. 
These complexities range from difficulties during fabrication and erection to concerns regarding 
the fatigue performance of the girder system. Due to the significant handling and fabrication 
requirements, the braces are often the most expensive component of steel bridges per unit weight. 
Therefore, it is advantageous to refine the design and detailing of cross-frame systems. 
 
The AASHTO LRFD Bridge Design Specification (BDS) (2023) provides design, detailing, and 
analysis guidance for cross-frames and diaphragms, but this guidance is primarily limited to the 
fatigue limit state. The 9th edition of the AASHTO LRFD BDS (2020) has no formal guidance on 
stability bracing requirements of cross-frames and diaphragms, though a recent study that 
investigated the stability bracing characteristics of conventional cross-frames in steel I-girder 
systems resulted in recommendations that will be included in the 10th edition of the AASHTO 
LRFD BDS due out in 2024. However, due to the absence of formal design requirements in all 
current and previous editions of the AASHTO BDS, the typical practice has been to utilize standard 
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brace details and layouts that are specified by state departments of transportation. For cross-frames 
in steel bridges, conventional detailing practice is to provide braces between adjacent girders 
across the full width of the bridge, as shown in Fig. 2 (A). However, in some applications, such a 
layout can lead to large live-load induced forces and difficulties with brace installation, particularly 
in bridges with significant support skew. Instead of providing cross-frames across the full width 
of the bridge, selective positioning cross-frames within the bridge cross-section and using top and 
bottom struts to lean other girders on the braced locations, as depicted in Fig. 2 (B), can provide 
improved behavior and efficiency. This concept is referred to as lean-on bracing and has long been 
applied to the bracing of frames for a variety of structural engineering applications. In the early 
2000s, lean-on concepts were adapted for implementation into steel I-girder bridges (Helwig and 
Wang 2003). Lean-on braces offer a cost-effective solution by combining the versatility of a 
torsional bracing system with the simplicity of a lateral brace. In these systems, torsional braces 
(typically in the form of cross-frames) are strategically placed throughout the bridge and provide 
the primary source of stability to the girders.  

Conventional Cross-Frame System (A)

Lean-On System (B)

Struts

 
Figure 2. Conventional Cross-Frame System (A) versus a Lean-On System (B) 

 
As noted previously, the current AASHTO LRFD provides no guidance on the design of cross-
frames for stability bracing requirements. The provisions approved for inclusion in the 10th edition 
of AASHTO focus on the stability bracing requirements for conventional bracing. Provisions for 
lean-on bracing are not included in the 10th edition of the AASHTO LRFD BDS; however, there 
is interest in the inclusion of guidance on lean-on concepts for future editions. Based upon the 
recommendations from TxDOT project 0-1772 (Helwig and Wang 2003; Romage 2008) there 
have been successful applications of lean-on bracing in bridges with both skewed and normal 
supports, primarily in the state of Texas. Some of the more recent applications have identified a 
number of aspects of lean-on bracing that would benefit from additional research. Furthermore, 
there has been an abundance of research conducted over the past few decades with respect to LTB 
and the bracing characteristics of cross-frames, but the application towards lean-on systems was 
not considered. Therefore, the present research investigation was conducted to refine the design 
process and develop improved guidance on design procedures for wider applications of lean-on 
bracing. 
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In previous work (Helwig and Wang 2003), equations were developed for the brace stiffness of a 
typical bracing system and for a lean-on system with only one cross-frame in the brace line. 
Subsequential work (Gasser et al. 2023) introduced potential approaches for the stiffness and force 
distribution in lean-on systems with multiple cross-frames per line. The generalization and detailed 
validation of a recommended approach are discussed in this paper.  
 
2. Background 
It is necessary to begin with an understanding of the required brace stiffness of the torsional bracing 
system. The current equations for the provided brace stiffness of a typical bracing system are then 
discussed.  
 
2.1 Brace Stiffness Requirement Equation 
The recent ballot provisions for inclusion into the AASHTO bridge design specifications are 
generally an extension of the required brace stiffness provided in AISC (2017), and given in the 
following expression for full-depth cross-frames:  
 

  𝛽் ௥௘௤ =
ଶ.ସ௅ெೠ

మ

ఝ௡ாூ೐೑೑஼್
మ (1) 

 
where 𝐿 is the span length, 𝑀௨ is the factored design moment, 𝜑 is 0.75 (LRFD), 𝑛 is the number 
of intermediate braces, 𝐸 is the modulus of elasticity, 𝐶௕ is the moment gradient factor, and 𝐼௘௙௙ 
is defined as:  

 𝐼௘௙௙ = 𝐼௬௖ +
௧

௖
𝐼௬௧ (2) 

 
where 𝐼௬௖ is the lateral moment of inertia of the compression flange, 𝐼௬௧  is the lateral moment of 
inertia of the tension flange, 𝑡 is the distance from the centroid of the tension flange to the neutral 
bending axis, and 𝑐 is the distance from the centroid of the compression flange to the neutral 
bending axis.  
 
The expression shown in Eq. 1 approximately provides twice the ideal stiffness and is assumed to 
limit the twist at the brace location to a value equal to the initial imperfection, 𝜃଴. Therefore, the 
resulting brace moment (𝑀௕௥) is given by the following expression: 
 

 𝑀௕௥ = 𝛽் ௥௘௤ᇱௗ𝜃଴ =
ଶ.ସ௅ெೠ

మ

ఝ௡ாூ೐೑೑஼್
మ

௅್

ହ଴଴௛బ
  (3) 

 
2.2 Cross-Frame Stiffness Equation 
The provided brace stiffness must meet or exceed the required brace stiffness:  
 
 𝛽் ≥ 𝛽்௥௘௤ᇱௗ (4) 
 
where 𝛽் is the total brace stiffness of the torsional system and is generally a function of three 
stiffness components. Most stability bracing systems follow the equations for springs in series as 
given by the following expression: 
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ଵ
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=

ଵ

ఉ್
+

ଵ

ఉ೒
+

ଵ

ఉೞ೐೎
   (5) 

 
where 𝛽௕  is the stiffness of the brace, 𝛽௚ is the in-plane girder stiffness, and 𝛽௦௘௖ is the stiffness of 
the cross-section related to cross-sectional distortion. Eq. 5 indicates that 𝛽்  is less than the 
smallest of the three individual stiffness components, which are assumed to interact as springs in 
series. From this relationship, it is evident that an otherwise stiff cross-frame can be adversely 
affected by poor in-plane girder stiffness or significant distortional effects in the girder webs. Thus, 
the overall stiffness of a torsional brace is effectively limited by the most flexible component in 
Eq. 5. 
 
2.3 In-Plane Girder Stiffness, 𝛽௚ 
The in-plane (i.e., vertical) flexural stiffness of the bridge girders themselves contribute to the 
overall stiffness of the torsional bracing system. The stiffness contribution of the girders was first 
shown in twin-girder systems (Helwig et al. 1993). As shown in Fig. 3, when the girders are 
subjected to a twist, the internal moment in the cross-frame is equilibrated by vertical shear forces 
acting at the ends of the brace. The vertical forces on the adjacent girders cause one girder to 
deflect upwards and the other to deflect downwards, leading to a rigid body rotation. These 
deformations reduce the effectiveness of the brace. With a wider system, this displacement is 
reduced, as demonstrated by the four-girder system shown in the same figure. 

s2Mbr 
s

2Mbr 
s

Mbr Mbr

Δ

2Mbr 
s

2Mbr 
s

s s s

4Mbr 
3s

4Mbr 
3s  

Figure 3. In-Plane Girder Stiffness. 
 
The in-plane girder stiffness contribution is most critical in narrow systems, such as two or three-
girder bridges, and is tied to a mode of buckling that is often referred to as the system buckling 
mode (Yura et al. 2008; Han and Helwig 2016). If 𝛽௚ is less than 𝛽் ௥௘௤ᇱௗ, full bracing cannot be 
achieved regardless of the stiffness of the stiffness of the brace that is utilized. From a stability 
perspective, the system mode will control over buckling between the brace points. As noted 
previously, design guidance for the system failure mode has been incorporated into AASHTO 
LRFD (2023).  
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A revised expression for the in-plane stiffness, based on the system buckling model, has been 
developed and proposed by Fish (2021; 2024). Subsequent work (Gasser et al. 2024) by the 
research team included the development of modification factors to account for behavior due to 
support skew and lean-on bracing. The complete expression is given by Eq. 6.  
 

 𝛽௚ = 𝐶௅ை
ଶ 𝐶௕௦

ଶ గరாூೣௌమ

ଶ௡೒(௄௅)య(௡ାଵ)
𝛼௫  (6) 

 
where 𝐶௅ை  is the lean-on layout factor, 𝐶௕௦  is the moment gradient factor, 𝐼௫  is the in-plane 
moment of inertia of the girder, 𝑆 is the girder spacing, 𝑛௚ is the number of girders in the system, 
𝑛 is the number of brace points, 𝐾 is an effective length factor used to account for warping restraint 
added by modifications to the bridge system, such as lateral trusses, and 𝛼௫ is the system warping 
stiffness factor developed in Fish (2021) and shown in Table 1.  
 

Table 1. System Warping Stiffness Factor Values 

Number of Girders System Warping Stiffness Factor 

2 1 

3 4 

4 10 

5 20 

6 35 

7 56 

8 84 

9 120 

10 165 

 
2.4 Cross-Section Stiffness, 𝛽௦௘௖ 
Only the region outside of the brace depth contributes to the cross-sectional distortion. Because 
most cross-frames in bridge I-girder applications are relatively deep with respect to the girder 
depth, the cross-section stiffness component tends to be a large value, such that it is not usually a 
significant concern in Eq. 5. Language in the approved ballot for AASHTO allows 𝛽௦௘௖ to be taken 
as infinity for braces deeper than 80% of the web depth, which is relatively common in most 
bridges. This provision recognizes the significant stiffness for relatively deep braces. As a result, 
𝛽௦௘௖ can often be ignored.  
 
If the braces are relatively shallow compared to girder depth, the stiffness of the cross-section, 
𝛽௦௘௖, may have a significant effect. Yura and Helwig (2015) derived Eq. 7 for full-depth web 
stiffeners when the distance from the top cross-frame to the top of the girder is the same as the 
distance from the bottom of the cross-frame to the bottom of the girder. This form is included in 
AISC Appendix 6: 
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 𝛽௦௘௖ =
ଷ.ଷா

௛ೢ
(

(ଵ.ହ௛ೢ)௧ೢ
య

ଵଶ
+

௧ೞ௕ೞ
య

ଵଶ
)    (7) 

 
where ℎ௪ is the height of the web, 𝑡௪ is the thickness of the web, 𝑡௦ is the thickness of the stiffener, 
𝑏௦ is the width of the stiffener. The first term in the equation accounts for the effective moment of 
inertia for the part of the web assumed to participate in the distortion, and the second term accounts 
for the moment of inertia of the stiffener, taken about the centroid of the web. 
 
2.5 Torsional Brace Stiffness, 𝛽௕௥ 
Torsional bracing systems typically utilize cross-frames or diaphragms to help bridge girders resist 
LTB. Cross-frames can be found in the form of X-shapes, K-shapes, and occasionally Z-shapes, 
as illustrated in Fig. 4. X-type braces work well with deep girders, such as in built-up I-girder 
bridges, while K-type braces or diaphragms are better suited for shallower girders. The torsional 
stiffness (i.e., the stiffness response of the brace when subjected to an in-plane moment) of the 
brace can be estimated based on an idealized truss model (Yura 2001; Helwig and Wang 2003).  
 

 
Figure 4. Various Forms of Cross-Frames (from left-to-right X-, Z-, and K-shapes). 

 
3. Current Torsional Brace Stiffness Derivations 
Two particularly relevant derivations are accepted for bracing stiffness: one for a single cross-
frame, and one for a cross-frame line with a single cross-frame and lean-on struts. Both are 
discussed in the following sections.  
 
3.1 Twin Girder System Derivation 
Yura (2001) developed expressions for the torsional brace stiffness of cross-frames with either     
Z-, X-, or K-shaped geometries. The Z-shaped cross-frame is also applicable to cross-frames with 
two diagonals in which an engineer may conservatively neglect the compression diagonal due to 
the relatively low buckling strength of single-angle members that are frequently used for the 
braces. Such a cross-frame is often referred to as a tension-only diagonal system. The ensuing 
discussion focuses on the derivation for the Z-shaped system. In the derivation, the cross-frame is 
idealized as a truss with axially loaded members. The method of virtual work can be used to derive 
the expression. The idealization of this system is shown in Fig. 5. The force demand on the cross-
frame consists of a force couple on both ends, as shown in the figure. 
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Figure 5. Twin Girder Brace Stiffness Idealization 

 
In this approach, Eqns. 8 and 9 are combined to result in the brace stiffness (𝛽௕௥), which is shown 
in Eqn. 10. The displacement of the critical girder is the basis for calculating the provided stiffness. 
The critical girder is the one with the largest total displacement of the top and bottom. 
 
 𝑀 = 𝐹ℎ   (8) 
 

 𝛽௕௥ =
ெ

ఏ
  (9) 

 

 𝛽௕௥ =
ி௛మ

∆೎ೝ೔೟
  (10) 

 
where 𝑀 is the moment applied to the system, 𝐹 is a unit load applied at the top and bottom of 
each girder in the directions shown, ℎ is the height of the brace, 𝜃 is the rotation of the girder, and 
∆௖௥௜௧ is the total displacement of the critical girder (here, ∆்ଶ + ∆஻ଶ).  
 
From the virtual work procedure, ∆௖௥௜௧ is calculated, resulting in Eqn. 11 for 𝛽௕௥. This equation 
represents the stiffness of a Z-shaped cross-frame. Yura (2001) presented similar derivations for 
X-type and K-type cross-frames.  
 

 𝛽௕௥ =
௛మௌమா

మಽ೏
య

ಲ೏
ା

ೄయ

ಲೞ

  (11) 

 
where ℎ௕ is the depth of the cross-frame, 𝐿ௗ is the length of the cross-frame diagonal members, 
𝐴ௗ is the cross-sectional area of the cross-frame diagonals, and 𝐴௦ is the cross-sectional area of 
the cross-frame struts. 
 
From Eq. 11, it is evident that the torsional stiffness of the brace is a function of the axial stiffness 
of the individual members. Although not explicitly presented, the inherent flexibility of the 
connections should also be considered in the evaluation of the overall brace stiffness, similar to 
what is done for cross-section distortional effects or in-plane girder flexibility. 

For cross-frame applications, single-angle or tee sections are often used for cross-frames and are 
attached to connection or gusset plates with eccentric connections to the main member. These 
eccentricities lead to a reduction in stiffness, as covered in Battistini et al. (2013; 2016) and Wang 
(2013). The stiffness reduction is accounted for with a fixed reduction factor, R. The AASHTO 
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LRFD (2020) recommends an R-value of 0.65 during construction and 0.75 in the completed 
bridge. The R-factor is applied to the cross-sectional area of the diagonals and struts in computer 
analyses or stiffness equations. This reduction factor was calibrated to represent the softening 
effects for a wide range of common cross-frame configurations, connections, and member sizes. 
 
3.2 Lean-On Bracing Derivation 2003 
Similar to the stiffness of a single cross-frame developed by Yura (2001), Helwig and Wang (2003) 
derived a generalized equation for a Z-shaped cross-frame or X-shaped cross frame with the 
tension only assumption. The brace stiffness contribution in a lean-on bracing system that reflected 
the bracing load path of a series of adjacent girders restrained by top and bottom struts with a 
single cross-frame at one end of the bracing line (exterior alignment) is given by Eqn. 12.  
 

 𝛽௕௥,ଶ଴଴ଷ =
௛మௌమா

೙೒೎ಽ೏
య

ಲ೏
ା

ೄయ

ಲೞ
൫௡೒೎ିଵ൯

మ
  (12) 

 
where 𝑛௚௖ is the number of girders per cross-frame.  
 
Based on the specific geometry that was considered in the derivation, the number of cross-frames 
per bracing line is assumed to be one, so 𝑛௚௖ is effectively the number of girders. The method of 
virtual work can be used to account for the axial shortening of the struts and diagonals based on 
the respective forces in the individual members. As an example, the idealization of a four-girder 
system is shown in Fig. 6. The free-body diagram shows the accumulation of forces that develop 
across the width of the bridge. The bracing demand from the girders results in force couples that 
lead to the forces indicated in the figure.  
 

 
Figure 6. Lean-On Bracing Stiffness Idealization 

 
The expression in Eq. 12 has been used in some designs for lean-on systems where more than one 
cross-frame in a given bracing line. Due to the definition for 𝑛௚௖ in Helwig and Wang (2003), 

which was the number of girders per cross-frame, designers simply divided the number of girders 
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by the number of cross-frames. Although such an interpretation makes sense from the definition
of the variable – the expression was not derived for such an application.

4. Approach for Multiple Cross-Frames
Because the lean-on bracing stiffness equation given by Eq. 12 is only applicable to cross-frame 
lines with one Z-frame or tension model X-frame in an exterior bay, it is advantageous to study 
ways to modify the expression to account for varied number, location, and type of cross-frame. 
Gasser et al. (2023) introduced potential procedures to accommodate for the presence of multiple 
adjacent  cross-frames  aligned  to  one  side  of  a  bracing  line.  The  following  sections  review  the
recommended approach and introduce a generalized brace stiffness equation.

4.1. Description of Cross-Section Slice Approach
Based  on  a  comparison  of  several  approaches  and  initial  results  (Gasser  et  al.  2023),  the 
recommended approach for accounting for lean-on brace lines with multiple cross-frames is the 
Cross-Section Slice (CSS). In this idealization, a redundant cross-frame is essentially ignored. This 
is shown for a four-girder system with two cross-frames in Fig. 7, where the left cross-frame is not
considered  in  determining  the  brace  stiffness.  This  results  in ∆௖௥௜௧ equal  to  the  sum  of
∆்ଷ, ∆்ସ, ∆஻ଷ, 𝑎𝑛𝑑 ∆஻ସ. The brace stiffness of the configuration is then calculated using Eq. 12 for 
virtual work for a three-girder system with one exterior cross-frame, resulting in Eq. 13.

 

 
Figure 7. Cross-Section Slice Idealization 

 

 𝛽௕௥,ଷீ =
ி௛మ

∆೎ೝ೔೟
=

ி௛మ

యಷಽ೏
య

ೄమಲ೏ಶ
ା

రಷೄ

ಲೞಶ

  (13) 

 

 
4.2 Generalization of the Cross-Section Slice Approach
In order to construct a generally applicable equation, the CSS approach was applied to Eq. 12, to 
result in Eq. 14. The 𝑛௚௖ term was substituted for separate terms representing the number of 
girders and the number of cross-frames separately.

 
 

𝛽௕௥,஼ௌௌ =
𝐸𝑆ଶℎଶ

(௡೒ି௡೎ାଵ)௅೏
య

஺೏
+

൫௡೒ି௡೎൯
మ

ௌయ

஺ೞ

 
(14) 

 
where 𝑛௚ is the number of girders and 𝑛௖ is the number of cross-frames in the bracing line. 
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5. Detailed Validation
A  finite  element  model  was  used  to  validate  the  derived  generalized  CSS  equation  for  varying 
cross-frame  line  configurations.  The  model  validation  process  and  results  are  described  in  the
following sections.

5.1 Model Validation
In order to validate the derived CSS expression, it was necessary to first develop models of cross- 
frame system sections with the same assumptions as previous derivations (J. A. Yura 2001; T. A. 
Helwig and Wang 2003). SAP2000 was the finite element program selected. The bracing system 
was idealized as a two-dimensional truss system. All members were moment released at both ends. 
The girders were assumed to have infinite stiffness (which was later shown to be inconsequential), 
and the cross-frame line was simply supported with lateral unit loads applied at the top and bottom 
of each girder, as shown in Fig. 8.

  

 

 

 

Figure 8. Twin Girder Tension Model Idealization and Deformed Shape

In order to validate the modeling procedure for an analysis of the brace stiffness (𝛽௕௥), the SAP
models were compared with analytical solutions. First, a twin-girder system was considered. The 
current equation for the brace stiffness based on the shown tension model is given by Eq. 11 (J. A. 
Yura 2001). The model was also run with both cross-frame diagonals in order to quantify the level 
of conservatism of the tension system equation. To calculate the stiffness of the model, Eq. 10 was 
used, with ∆௖௥௜௧ indicating the sum of the respective displacements at the top and bottom of the
right girder. Negligible error (less than 1.0%) resulted between the tension system SAP model and 
the tension system equation, which indicates the model is performing as expected. Additionally, it 
was found that the full cross-frame SAP model has more than double the stiffness, indicating that
the addition of the second cross-frame diagonal significantly impacts the stiffness of the brace.

5.2 Detailed Validation of Generalized Equation
The results from the generalized CSS equation (Eq. 14) were compared with finite element analysis 
results for varied cross-frame layouts. The stiffness obtained from the CSS equation was divided 
by  the  stiffness  obtained  from  the  SAP  model  to  obtain  a  ratio  where  a  value  greater  than  one 
indicated  the  CSS  equation  was  unconservative.  Values  less  than  or  equal  to  one  indicate  an 
accurate or conservative expression. In all configurations, the equation was found to be exact or
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conservative. The analysis sets are discussed in detail below for a modulus of 29,000 ksi, an area 
of 6.45 in2 for all members, girder spacing of 96 inches, and cross-frame depth of 76 inches.  
 
The exterior cross-frame position aligned to the left was studied first. One to nine cross-frames 
were positioned next to each other on one side of two to ten girder systems. The stiffnesses 
resulting from each of the three calculations were normalized against the model stiffness, such that 
a value greater than 1.0 would indicate the equation giving a larger stiffness than the model, which 
is unconservative. In this configuration, the CSS approach was always conservative. For layouts 
with exactly one cross-frame, the equation predicted the exact same stiffness as the model. For 
cross-frame lines with more cross-frames, the conservatism of the equation relative to the model 
increased to a maximum of 25%. The results are depicted in Fig. 9. Example cross-sections for 
six-girder bridges are shown to the left of the plot. Note that the right plot includes results for 
layouts with two to ten girders.  
 

 
Figure 9. 

ఉ್ೝ,಴ೄೄ

ఉ್ೝ,ೄಲು ೘೚೏೐೗
 for Exterior Z-Frames 

  
Next, a similar approach was applied to a checkerboard pattern, with the cross-frame line bays 
alternating cross-frames and lean-on struts. In this layout, the least conservative configuration is 
an even number of girders missing cross-frames on ends. However, the equation was conservative 
for all layouts. The equation became increasingly more conservative with more girders, as shown 
in Fig. 10Figure 10. The left side of the figure illustrates six-girder layouts, and the right plot 
provides the result for layouts with two to eleven girders.  
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Figure 10. 

ఉ್ೝ,಴ೄೄ

ఉ್ೝ,ೄಲು ೘೚೏೐೗
 for Checkerboard Z-Frames 

 
Cross-frame placements for interior and exterior bays were compared, as depicted in Fig. 11. 
Interestingly, the equation was most conservative for layouts with cross-frames placed in the two 
exterior bays, even compared to layouts with more cross-frames placed in interior bays. 
 

  
Figure 11. 

ఉ್ೝ,಴ೄೄ

ఉ್ೝ,ೄಲು ೘೚೏೐೗
 for Interior vs. Exterior Z-Frames 

 
In the next set of models, the number of cross-frames was kept constant, but the position of the 
cross-frame was changed. In the charts, the cross-frame axis was changed from the number of 
cross-frames to the position (or bay) of the first cross-frame in the line. In the case of the single 
cross-frame, all three equations resulted in the same values because they all reduce to the same 
equation for one cross-frame. These results are shown in Figs. 12, 13, and 14. The equation was 
more conservative for cross-frames placed in interior bays, and most conservative for cross-frames 
placed furthest from the pin support. This confirms that the limiting cross-section pattern is cross-
frames aligned to one side.  
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Figure 12. 

ఉ್ೝ,಴ೄೄ

ఉ್ೝ,ೄಲು ೘೚೏೐೗
 for One Z-Frame Varied Location 

 

 
Figure 13. 

ఉ್ೝ,಴ೄೄ

ఉ್ೝ,ೄಲು ೘೚೏೐೗
 for Two Z-Frames Varied Location 

 

 
Figure 14. 

ఉ್ೝ,಴ೄೄ

ఉ್ೝ,ೄಲು ೘೚೏೐೗
 for Z-Frames Three Cross-Frames Varied Location 
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Overall, the CSS equation results in perfect agreement with the SAP model for systems with only 
one  exterior  cross-frame  and  becomes  increasingly  conservative  for  systems  approaching 
conventional bracing. The CSS approach results in the same stiffness value regardless of cross- 
frame placement within the cross-frame line, as it is only dependent on the number of cross-frames 
and  girders.  The  limiting  cross-frame  placement  was  found  to  be  an  exterior  cross-frame 
alignment,  which  is  where  all  of  the  cross-frames  were  placed  in  adjacent  exterior  bays  (Fig.
9Figure 9). This results in the largest possible number of adjacent lean-on bays.

6. Conclusion and Ongoing Work
The CSS approach introduced by Gasser (2023) was generalized and validated against models of 
hundreds of cross-frame line configurations. The equation matches the model stiffness exactly for 
layouts with one exterior cross-frame and is conservative for all cross-frame line layouts. Work is 
ongoing to modify the expression to account for nonadjacent and interior cross-frame placements 
more  precisely.  Derivations  to  account  for  the  contribution  of  the  compression  diagonal  in  X- 
frames and geometry of K-frames are in progress. Additionally, studies are ongoing to assess the 
total  system  stiffness  due  to  the  varied  brace  stiffness  along  the  span  of  lean-on  systems  and
determine ideal cross-frame layouts.
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