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A Refined In-Plane Girder Stiffness Expression for Straight I-Shaped Girder
Systems Utilizing Torsional Beam Bracing
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Abstract
System and member  stability  are  both major  concerns  during erection  and construction of steel 
bridges. However, the system buckling limit state is often most critical in relatively  narrow girder 
systems. Member stability is usually  controlled by the resistance to conventional lateral-torsional 
buckling (LTB), which is improved by reducing the unbraced length of the girders with the use of 
bracing.  The most common form of bracing in steel bridges are cross-frames which are categorized 
as torsional bracing since these braces restrain twist of the girder cross-section. An effective brace 
must not only  provide adequate strength but must also meet certain stiffness requirements.  The 
torsional bracing system stiffness is a function of several components including the stiffness of the 
braces, the number of in-line  braces, cross-sectional  distortion, as well as the in-plane  stiffness of 
the  girder  system.  Currently,  the  bracing  design  provisions  of  the  AISC Specification  do  not 
account  for  the  in-plane  girder  stiffness,  however  this  stiffness  component  can  dominate  the 
behavior  of narrow girder units and may lead to inadequate bracing if it is neglected. This paper 
presents the verification of a design expression which considers the in-plane stiffness of all girders 
within a system. The work focuses on the warping rigidity of multi-girder systems, the cumulative 
stiffness effects of multiple in-line braces, appropriate discretization of a distributed in-plane girder 
stiffness and extends findings from previous investigations that have targeted the system-buckling 
mode of narrow girder units.

1. Introduction
Straight I-shaped girders are often utilized in structural steel systems, as they offer efficiency and 
economy in multiple applications.  However, the high strength-to-weight ratio of steel often leads 
to relatively  slender elements,  requiring  thoughtful considerations of stability limit  states. This  is 
particularly true during construction phases when all  loading is  supported by the non-composite 
steel  sections.  The critical  limit  state under  these construction  conditions  is  commonly  lateral- 
torsional buckling (LTB), which is a limit state that involves lateral movement of the compression 
elements accompanied by a twist of the overall  section.  This  limit  state can  control at either  the 
individual girder or system level.
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At the girder level (conventional LTB), the LTB behavior can be improved by reducing the girder’s 
unbraced length. Adequate beam bracing can be achieved by either restraining lateral displacement 
of the critical compression flange (lateral bracing), or by controlling twist of the girder section 
(torsional bracing). After a composite deck has been poured and cured, it generally provides both 
lateral and torsional restraint to all girders. As a result, conventional LTB is not usually a concern 
in the completed structure. For the construction condition, torsional braces (such as cross-frames 
or plate diaphragms) are typically employed to serve as stability braces, which enhance the 
conventional LTB resistance of the individual girders by reducing the girder’s unbraced length. 
However, at the system (or global) level, LTB resistance is primarily a function of the width of the 
girder system and the provided end warping restraint. Because of this, the number and spacing of 
intermediate brace points does little to increase the system LTB resistance. Therefore, it is 
important to ensure that there is adequate system stiffness to provide stability at both the girder 
and system levels. It is of note that though the system buckling mode failure is most prevalent in 
bridge systems, it can also control narrow flexural member systems in building applications.  
 
Though effective bracing must provide both adequate stiffness and strength (Winter, 1960), this 
paper focuses on the requirements for system stiffness. The stiffness of torsional bracing systems 
is a function of the stiffness of the brace, cross-sectional distortion stiffness, as well as the in-plane 
stiffness of the girders. Though the in-plane girder stiffness component is not currently accounted 
for in the AISC specification, recently approved ballot items will account for it in the AASHTO 
Bridge Design Specification. This stiffness component can dominate the behavior of narrow girder 
systems and may lead to inadequate bracing if not considered. This is because the in-plane stiffness 
competent acts at the system level and therefore plays a large role in the system’s ability to resist 
global lateral-torsional buckling. 
 
An in-plane girder stiffness expression was developed in the early 1990’s (Helwig, Yura and 
Frank, 1993). This expression was derived for a twin-girder system which had a single 
intermediate torsional brace at mid-span. This is the in-plane girders stiffness expression that has 
been adopted into the AASHTO Bridge Design Specification 10th Edition (2024). However, recent 
design experiences utilizing this expression suggested that there are common cases in which the 
provided in-plane girder stiffness is over-predicted when compared to finite element analysis 
(FEA) solutions. In response to these experiences, and because in-plane girder stiffness can be the 
limiting factor in girder system stability analyses, Fish (2021) developed a new in-plane girder 
stiffness expression that accounts for the effect of multiple intermediate cross-frames and girders.  
The refined expression was not considered for inclusion into AASHTO 2024 because the 
expression had not been suitably validated with FEA results, which is the purpose of the work 
documented in this paper.  Background information on torsional beam bracing systems, including 
current design methodologies and the system lateral-torsional buckling mode is presented in the 
next section. 
 
2. Background 
While the conventional lateral-torsional buckling (LTB) resistance can be improved by adjusting 
girder proportions, the most efficient means of increasing in individual girder’s buckling resistance 
is to reduce the distance between bracing locations, otherwise known as the girder’s unbraced 
length. However, for the system LTB mode, the girder’s unbraced length is the entire span and is 
therefore not affected by the number of intermediate braces. 
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Conventional LTB is a failure mode that generally consists of a lateral translation of the section 
accompanied by a twist of the girder cross-section. With suitable bracing, lateral torsional buckling 
generally occurs within the unbraced length. Timoshenko and Gere (1961) derived the following 
exact elastic buckling solution for a simply supported, doubly symmetric section, accounting for 
both St. Venant and warping torsional stiffnesses, which was for the case of uniform moment 
loading and unrestrained warping at the ends of the unbraced length shown in Eq. 1: 
 

 𝑀𝑀𝑜𝑜 = 𝜋𝜋
𝐿𝐿𝑏𝑏
�𝐸𝐸𝐼𝐼𝑦𝑦𝐺𝐺𝐺𝐺 + 𝜋𝜋2𝐸𝐸2𝐶𝐶𝑤𝑤𝐼𝐼𝑦𝑦

𝐿𝐿𝑏𝑏
2   (1) 

 
where E is the modulus of elasticity, Iy is the weak-axis moment of inertia, Lb is the unbraced 
length, G is the shear modulus of elasticity, J is the torsional constant, and Cw is the torsional 
warping constant, as estimated by Eq. 2: 
 
 𝐶𝐶𝑤𝑤 = 𝐼𝐼𝑦𝑦ℎ0

2

4
 (2) 

 
where ho is the distance between flange centroids. 
 
Considering the two terms under the radical in Eq. 1, the first is the St. Venant torsional stiffness 
and is related to the uniform torsional resistance of the section. The second term is related to 
warping stiffness as well as to the non-uniform torsional stiffness. In the original derivation of Eq. 
1, Timoshenko stated that both twist and lateral deformation were restrained at the brace points; 
however, only the boundary condition of zero twist was enforced in the derivation. Therefore, 
solely preventing twist of the cross-section results in effective bracing against LTB. 
 
Taylor and Ojalvo (1966) quantified the buckling capacity of a doubly symmetric beam with 
continuous torsional bracing subjected to uniform moment loading, thereby relating the girder 
buckling capacity to the stiffness of the brace. This expression is shown in Eq. 3: 
 

 𝑀𝑀𝑐𝑐𝑐𝑐 = �𝑀𝑀𝑜𝑜
2 + 𝛽𝛽̅𝑇𝑇𝐸𝐸𝐼𝐼𝑦𝑦 (3) 

 
where 𝛽𝛽̅𝑇𝑇 is the total distributed torsional brace stiffness (units of moment/radian/unit length). 
 
System LTB occurs when a multi-girder system which is interlinked by braces, such as cross-
frames, buckles as a unit (Fig. 1) in a half-sine curve shape. This mode often becomes more critical 
than conventional LTB (buckling between brace points) in narrow girder systems with small w/L 
ratios; where w is the distance between exterior girders and L is the span length.  
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Fig. 1 System Buckling Mode. 

 
Yura et al. (2008) developed the following expression for the elastic global buckling resistance of 
a doubly symmetric twin I-girder system: 
 

 𝑀𝑀𝑔𝑔 ,2008 = 2𝜋𝜋
𝐿𝐿
�𝐸𝐸𝐼𝐼𝑦𝑦𝐺𝐺𝐺𝐺 + 𝜋𝜋2𝐸𝐸2 𝐼𝐼𝑦𝑦

4𝐿𝐿2
�𝐼𝐼𝑦𝑦ℎ𝑜𝑜2 + 𝐼𝐼𝑥𝑥𝑠𝑠2� (4) 

 
where Ix is the strong-axis moment of inertia, s is the girder spacing and all other variables are as 
previously defined. All section properties in Eq. 4 (Ix, Iy, J, ho) are those for a single girder. 
 
When utilizing girders with typical proportions, the St. Venant term in Eq. 4 does not significantly 
impact the behavior. Neglecting this term and accounting for singly symmetric girders, Yura et al. 
(2008) produced the simplified expression shown in Eq. 5, which gives the simplified buckling 
moment capacity for one of the girders in a twin-girder system: 
 
 𝑀𝑀𝑔𝑔𝑔𝑔 ,2008 = 𝜋𝜋2𝑔𝑔𝐸𝐸

𝑛𝑛𝑔𝑔𝐿𝐿2
�𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝑥𝑥 (5) 

 
where ng is the number of girders in the system and Ieff  is the effective weak-axis moment of inertia 
of a singly symmetric girder (Yura, 2001). 
 
Han and Helwig (2020) modified Eq. 5 in order to account for moment gradient, and multiple 
girders within the system producing the expression shown in Eq. 6: 
 
 𝑀𝑀𝑔𝑔𝑔𝑔 ,2020 = 𝐶𝐶𝑏𝑏𝑔𝑔

𝜋𝜋2(𝑛𝑛𝑔𝑔−1)𝑔𝑔𝐸𝐸
𝑛𝑛𝑔𝑔𝐿𝐿2

�𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝑥𝑥 (6) 

 
where Cbs is the system level moment gradient factor and all other variables are as previously 
defined. 
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As stated previously, Eqs. 4, 5, and 6 are all based on two-girder systems. Additionally, the current  
AASHTO (2020) provisions allow Eq. 6 to only be used for systems of four girders or less. Since 
system LTB can control in bridges with more than four girders, Fish (2021) developed a system 
buckling capacity expression that accounts for any number of girders as shown in Eq. 7: 
 

 𝑀𝑀𝑔𝑔 ,2021 = 𝜋𝜋
𝐿𝐿
�𝐸𝐸𝐼𝐼𝑦𝑦𝐺𝐺𝐺𝐺 + 𝜋𝜋2𝐸𝐸2 𝐼𝐼𝑦𝑦

𝐿𝐿2
�𝐼𝐼𝑦𝑦ℎ𝑜𝑜

2

4
+ 𝐼𝐼𝑥𝑥 𝑔𝑔

2𝛼𝛼𝑥𝑥
2𝑛𝑛𝑔𝑔

� (7) 

 
Eq. 7 can be simplified using the same assumptions as those used for Eq. 5, leading to Eq. 8: 
 

 𝑀𝑀𝑔𝑔𝑔𝑔 ,2021 = 𝜋𝜋2𝑔𝑔𝐸𝐸
𝐿𝐿2

�𝐼𝐼𝑦𝑦𝐼𝐼𝑥𝑥 �
𝛼𝛼𝑥𝑥
2𝑛𝑛𝑔𝑔

� (8) 

 
Eqs. 7 and 8 represent an individual girder’s global bucking moment capacity and as such, 
multiplying either expression by the number of girders in the system (𝑛𝑛𝑔𝑔 ) will result in the buckling 
capacity of the entire system. Additionally, these two equations were derived assuming the same 
prismatic section was used for each girder. For situations in which non-prismatic and/or non-
uniform girder sections are utilized, it is recommended that the length-weighted average approach 
proposed by Reichenbach et al. (2020) be used to determine the girder section properties. The 𝛼𝛼𝑥𝑥 
term in Eqs. 7 and 8 is referred to as the vertical system warping stiffness factor and is akin to the 
warping stiffness constant (𝐶𝐶𝑤𝑤). It is determined by Eq. 9: 
 
 𝛼𝛼𝑥𝑥 = ∑�𝑛𝑛𝑔𝑔 − 𝑖𝑖�2 (9) 
 
where the index (𝑖𝑖) represents each odd number that is less than 𝑛𝑛𝑔𝑔  as illustrated in Fig. 2.  
 

 
Fig. 2 Vertical system warping stiffness factor indices for a  nine-girder system. 

 
Several vertical system warping stiffness factors are provided in Table 1. 
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Table 1. Vertical System Warping Stiffness Factors (𝛼𝛼𝑥𝑥). 

Number of Girders1 Associated Values of i 𝛼𝛼𝑥𝑥 
2 1 1 
3 
4 
5 
6 
… 
9 

1 
1,3 
1,3 

1,3,5 
… 

1,3,5,7 

4 
10 
20 
35 
… 

120 
1. Eq. 9 can be used to determine warping stiffness factors for systems with other numbers of girders. 

 
With the system (global) buckling capacity of a multi-girder system developed (Eq. 7), an 
expression to define the total system torsional brace stiffness (𝛽𝛽̅𝑇𝑇) was found by setting Eqs. 3 and 
7 equal to one another and simplifying algebraically. The resulting stiffness expression represents 
the minimum (ideal) system stiffness necessary for global stability. A brief background of the 
torsional brace stiffness requirements is provided below. 
  
Winter (1960) developed a model that demonstrated a simple means by which the ideal stiffness 
requirements for lateral bracing systems can be determined. The ideal stiffness is the minimum 
stiffness required that allows a member to reach a load level corresponding to buckling between 
the brace points. Winter’s model also demonstrated the impact of imperfections on the buckling 
behavior, and that a stiffness larger than the ideal stiffness was necessary to control member 
deformations and brace forces. As a result, most bracing provisions currently recommend using 
twice the ideal stiffness. Liu and Helwig (2020) showed that requiring three times the ideal 
stiffness provides better control of brace forces for torsional beam bracing systems when the 
critical shape imperfection involves a lateral sweep of the compression flange while the tension 
flange remains straight. This imperfection shape was found to be the worst case for beams (Wang 
and Helwig, 2005); however, if the brace is sufficiently deep, the critical initial imperfection shape 
is better represented by a pure sweep of the section and providing twice the ideal stiffness is 
appropriate (Han and Helwig, 2020). 
 
The torsional beam bracing provisions in the upcoming AASHTO Bridge Design Specification 
10th Edition (2024) provide stiffness and strength requirements that are a function of the design 
moment, Mu. This design moment is the load that a braced girder is subjected to at the stage in 
question. As noted earlier, the critical stage for LTB stability is generally during construction, 
particularly during pouring of the concrete deck. Therefore, Mu will typically be the maximum 
factored construction moment during casting of the slab. Assuming that the braces being used are 
at least 80 percent of the depth of the girder, the system stiffness requirement in the approved 
AASHTO provisions is given by the following expression: 
 

 (𝛽𝛽𝑇𝑇)𝑐𝑐𝑒𝑒𝑟𝑟 = 2 .4𝐿𝐿
𝜙𝜙𝑠𝑠𝑏𝑏𝑛𝑛𝐸𝐸𝐼𝐼𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦

�𝑀𝑀𝑢𝑢
𝐶𝐶𝑏𝑏
�
2
 (10) 

 
where 𝜙𝜙𝑔𝑔𝑏𝑏  is the stability bracing resistance factor (0.8), Cb is the moment gradient factor within 
the critical unbraced beam or girder, and 𝑛𝑛 is the number of intermediate cross-frames. 
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The provided system stiffness (which must be equal to or greater than the required system stiffness 
of Eq. 10) is a function of several bracing components: stiffness of the brace (𝛽𝛽𝑏𝑏𝑐𝑐); cross-sectional 
distortion stiffness (𝛽𝛽𝑔𝑔𝑒𝑒𝑐𝑐 ); and the in-plane girder stiffness (𝛽𝛽𝑔𝑔 ). Like many bracing systems, 
torsional beam bracing follows the fundamental equation for springs in series, such that the 
torsional system stiffness is given by the following expression: 
 
 1

𝛽𝛽𝑇𝑇
= 1

𝛽𝛽𝑏𝑏𝑏𝑏
+ 1

𝛽𝛽𝑔𝑔
+ 1

𝛽𝛽𝑠𝑠𝑦𝑦𝑠𝑠
 (11) 

 
There are a number of sources that discuss the background of an individual brace’s stiffness and 
the effects of cross-sectional distortion (AISC 2016, Yura 2001). The focus of the research 
documented in this paper is on the in-plane girder stiffness component, which is discussed in more 
detail next. 
 
When multiple girders are connected by bracing, such that they act as a unit, the in-plane (i.e., 
major axis) flexural stiffness of the individual girders contribute to the overall stiffness of the 
torsional bracing system. As shown in Fig. 3, when the girders are subjected to a twist, the internal 
moment that is subsequently developed in the cross-frame is equilibrated by vertical shear forces 
acting at the ends of the brace. The vertical forces on the adjacent girders cause one girder to 
deflect upwards and the other to deflect downwards leading to a rigid body rotation. These 
deformations reduce the effectiveness of the bracing system. With a wider system, this 
displacement is reduced, as demonstrated by the four-girder system shown in the figure. 
 

 
Fig. 3 In-Plane Girder Stiffness 

 
The behavior illustrated in Fig. 3 was initially quantified by Helwig, Yura and Frank (1993) for a 
two-girder system with a single torsional brace at mid-span and was expanded to multiple-girder 
systems by Yura (2001) as shown in Eq. 12: 
 

 𝛽𝛽𝑔𝑔 ,1993 = 24�𝑛𝑛𝑔𝑔−1�
2𝑔𝑔2𝐸𝐸𝐼𝐼𝑥𝑥

𝑛𝑛𝑔𝑔𝐿𝐿3
 (12) 
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Considering Eq. 11, if 𝛽𝛽𝑔𝑔 is less than the required 𝛽𝛽𝑇𝑇, full bracing cannot be achieved, regardless 
of the stiffness of the brace that is utilized. From a buckling perspective, if the in-plane stiffness 
of the girder is insufficient, the system mode will generally control over buckling between the 
brace points. Because the system mode of buckling is closely tied to the in-plane stiffness 
requirements, Fish (2021) utilized a system mode approach to derive a more accurate expression 
which accounts for multiple girders within the system cross-section. This expression is shown in 
Eq. 13: 
 
 𝛽𝛽�̅�𝑔 = 𝜋𝜋4𝐸𝐸𝐼𝐼𝑥𝑥𝑔𝑔

2𝛼𝛼𝑥𝑥
2𝑛𝑛𝑔𝑔𝐿𝐿4

 (13) 

 
Eq. 13 was derived directly from Eqs. 3 and 7, thereby accounting for the relationship between the 
system buckling capacity and in-plane girder stiffness. The initial derivation of Eq. 13 resulted in 
the in-plane girder stiffness being presented as a distributed stiffness having units of k-in/rad/in. 
However, in order to be utilized in bracing design provisions, the in-plane girder stiffness must be 
discretized and attributed to each torsional brace along the girder’s length. The appropriate 
discretization of the in-plane girder stiffness was studied and is discussed in a later section. 
 
3. Parametric Studies 
FEA parametric studies were conducted to evaluate the validity of the proposed in-plane girder 
stiffness expression. Two separate investigations were conducted focusing on A) the effective 
bracing as a function of number of cross-frames in a given line, and B) a study focused on the in-
plane girder stiffness.  Investigation A related to the effective bracing was divided into 2 phases.  
The first phase consisted of conducting analyses to identify the ideal system stiffness for each 
girder system, which was then used in the second phase to establish the effective brace stiffness of 
a given line of cross-frames with each girder system. Investigation B was focused on determining 
the in-plane girder stiffness from the FEA studies as a function of various girder geometries.  The 
in-plane girder stiffness, as predicted by FEA, was used to verify the predictive capabilities of the 
proposed expression given in Eq. 13. The overall parametric study methodology; modeling 
assumptions; determination of the ideal system, effective brace and in-plane girder stiffnesses; and 
the comparison results are presented in the following sections.  
 
3.1 Methodology Rationale 
For the purposes of evaluating the accuracy of the derived expression in Eq. 13, the resulting in-
plane girder stiffness from the FEA needed to be determined. However, as shown in Eq. 11, 
accurate estimates of all the system components are necessary in order to make direct comparisons 
between Eq. 13 and the in-plane girder stiffness of a given system as obtained from finite element 
analyses (𝛽𝛽𝑔𝑔,𝐹𝐹𝐸𝐸𝐹𝐹 ). Therefore, the study methodology was ultimately concerned with isolating the 
in-plane girder stiffness from the other stiffness terms: brace stiffness and cross-sectional 
distortion stiffness. Considering Eq. 11, to isolate in-plane girder stiffness, the three other terms 
must be known. The treatment of brace and cross-sectional distortion stiffness values is relatively 
straight forward and are addressed below. However, the ideal torsional system stiffness (𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖), 
which is the unique minimum system stiffness required to achieve buckling between the brace 
points, must be determined by analysis.   
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As demonstrated by the methodology utilized in Liu and Helwig (2020) and Fish (2021), a given 
term can be isolated by creating a significant disparity between the components; such that the 
secondary components are large enough numerically to be considered negligible, which therefore 
only leaves the focal stiffness component. By utilizing full depth cross-frames, the cross-sectional 
stiffness (βsec) component can be considered negligible for use in Eq. 11 (AASHTO 2024), thereby 
leaving only βg and βbr. With βsec removed from consideration, Fig. 4 illustrates the relationship 
the remaining stiffness components have to the total ideal system stiffness. As shown, an 
individual stiffness component does not need to be numerically infinite to be reasonably assumed 
to act as infinitely stiff. 
 

 
Fig. 4 Relationship between stiffness components relative to the ideal torsional brace stiffness of the system. 

 
With infinite cross-sectional stiffness, the individual brace stiffness (𝛽𝛽𝑏𝑏𝑐𝑐) and in-plane girder 
stiffness (𝛽𝛽𝑔𝑔) are the only two remaining independent unknowns, and two options exist to isolate 
one or the other: 
 

1. Increase the stiffness of the brace (by way of increasing the area of the brace members) 
such that 𝛽𝛽𝑏𝑏𝑐𝑐 can be eliminated, thereby isolating 𝛽𝛽𝑔𝑔. 

2. Increase the 𝑤𝑤/𝐿𝐿 ratio such that 𝛽𝛽𝑔𝑔 can be eliminated, thereby isolating 𝛽𝛽𝑏𝑏𝑐𝑐. 
 

Though the eventual goal is to isolate the in-plane girder stiffness, 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 must first be identified. 
This was accomplished by having both cross-sectional distortion and in-plane girder stiffness 
values tend towards infinity, thereby isolating the brace stiffness component. With 𝛽𝛽𝑏𝑏𝑐𝑐 as the only 
remaining unknown, the minimum brace stiffness required to achieve buckling between the brace 
points can be taken as equivalent to the ideal torsional system stiffness. For a given girder cross-
section, this value can be obtained by considering a relatively wide twin-girder system and is 
illustrated in Fig. 5. 
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Fig. 5 Idealized system isolating the effects of a  single stiffness component such that 𝛽𝛽𝑇𝑇 ,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 can be obtained. 

 
The concept of eliminating 𝛽𝛽𝑔𝑔 by widening the system to extreme levels was first used by Liu and 
Helwig (2020). Though the stated reasoning for using such a wide system was to avoid the system 
buckling mode, due to the relationship between the in-plane girder stiffness and system buckling 
described previously, an increase in system bucking capacity leads directly to an increase in 𝛽𝛽𝑔𝑔. 
Therefore, this concept of increasing 𝛽𝛽𝑔𝑔 to the point that it can be considered infinite was utilized 
and expanded upon in this study.  
 
3.2 Model Properties 
The finite element models utilized a combination of shell and truss elements as shown in Fig. 6. 
The girders and stiffeners were meshed with S4 linear shell elements whereas bracing members 
were comprised of single T3D2 linear truss elements. The mesh density for the shell elements was 
selected with an aspect ratio for the shells close to unity in Abaqus (2022). While perfect unity 
throughout was not possible, most aspect ratios varied between approximately 2/3 and 3/2. 
Additionally, stiffener elements were only attached to the web of the girders to minimize warping 
restraint that the plate elements might provide. Bracing members were attached at the web-flange 
juncture nodes. 
 

 
Fig. 6 Illustration demonstrating model elements, meshing, boundary conditions, and applied load. 
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To ensure consistent results when compared to hand calculations, the meshed web depth was set 
to match the depth of the section. The thickness property applied to shell elements was centrally 
distributed for the web and stiffener elements but shifted vertically for the flange elements to 
prevent mass overlap. 
  
Support boundary conditions mimic a simply-supported system and restrain lateral movement of 
both top and bottom flanges. Restraining lateral movement of the top and bottom flanges leads to 
the no-twist boundary condition assumed in the derivation of the buckling expressions. Another 
assumption employed in these derivations was that warping was unrestrained at the supports which 
was also accounted for in the models. A force couple oriented along the longitudinal axis of the 
girder and placed at the web-flange juncture nodes at each support was used to mimic a constant 
uniform moment loading on the girders. 
 
3.3 Determination of the Ideal Torsional System Stiffness (𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖) 
As mentioned previously, the assessment of 𝛽𝛽𝑔𝑔 relies on an accurate determination of 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖. To 
that end, a parametric study employing the idealized system method illustrated in Fig. 5 was 
performed utilizing the system geometry parameters shown in Table 2. 
 

Table 2. System geometry parameters utilized in ideal stiffness parametric study. 
Bridge Parameters Value Range 

Girder Spacing [80’] 
Number of Girders [2] 

Number of Cross-frame Lines [1, 2, 3] 
Unbraced Length [40’] 

 
The girder sections tested are shown in Fig. 7. 
 

 
Fig. 7 Girder sections used for parametric studies. 
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3.3 Determination of an Effective Brace Stiffness (𝛽𝛽𝑏𝑏𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒) 
Brace stiffness expressions typically only represent the stiffness of a single brace between two 
adjacent girders. However, during the course of the ideal torsional system stiffness parametric 
study, it was determined that there is an appreciable, and beneficial, effect when multiple in-line 
cross-frames are present (Fish et al., 2024). For example, with a twin girder system, at each brace 
location along the girder length a single brace restrains the girders (0.5 brace/girder). If three  
girders are utilized, there are two braces restraining three girders (0.67 brace/girder). As more 
girders are added, the number of braces tend to approach one brace per girder. Therefore, the 
individual brace stiffness required to achieve buckling between the brace points decreases as more 
girders (and therefore cross-frames) are added. Because this behavior was determined to act in a 
predictable way, an expression was developed that could be used as an adjustment factor to be 
applied to the basic brace stiffness expression. The brace stiffness adjustment factor (𝐶𝐶𝑛𝑛𝑐𝑐) can be 
determined by Eq.14: 
 
 𝐶𝐶𝑛𝑛𝑐𝑐 = 1 + 𝑛𝑛𝑔𝑔−2

𝑛𝑛𝑔𝑔+1.75
 (14) 

 
Multiplying the individual brace stiffness (𝛽𝛽𝑏𝑏𝑐𝑐) by the brace stiffness adjustment factor (𝐶𝐶𝑛𝑛𝑐𝑐 ) 
produces an effective brace stiffness (𝛽𝛽𝑏𝑏𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒), which more accurately predicts the brace stiffness 
of a given cross-frame line. Because the resulting brace stiffness represents the effective brace 
stiffness – a more accurate representation of the in-plane girder stiffness of the associated system 
can therefore be determined. This process is outlined in the next section. 
 
3.4 Determination of the In-Plane Girder Stiffness (𝛽𝛽𝑔𝑔) 
For the 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 study discussed previously, the in-plane girder stiffness component was eliminated  
by using an extremely wide system (Fig. 5). In order to determine the in-plane girder stiffness, as 
predicted by FEA,  𝛽𝛽𝑔𝑔 was  reintroduced to the model. This was accomplished by reducing the 
girder spacing such that the w/L ratio would be decreased, causing 𝛽𝛽𝑔𝑔 to have a discernable impact 
on the system solution.  
 
The minimum brace stiffness required to buckle between brace points was determined for several 
girder systems using the parameters defined in Table 3.  
 

Table 3. System parameters tested in the 𝛽𝛽𝑔𝑔  verification study. 
Bridge Parameters Value Range 

Girder Spacing [8′, 10′, 12′]  
Number of Girders [2,  3,  4,  5] 

Number of Cross-frame Lines [1,  2,  3,  5] 
Unbraced Length [20′, 40′]  
Girder Sections [#1, #2, #3, #4] 

 
For a given girder cross-section and brace spacing, the ideal torsional brace stiffness, 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖, is a 
constant. Since 𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 is known from the previous analyses, and 𝛽𝛽𝑏𝑏𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒  was determined from the 
first investigation considering the parameters listed in Table 3,  𝛽𝛽𝑔𝑔 ,𝐹𝐹𝐸𝐸𝐹𝐹  was calculated based upon 
Eq. 15: 
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 𝛽𝛽𝑔𝑔 ,𝐹𝐹𝐸𝐸𝐹𝐹 = 1
1

𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑙𝑙
− 1
𝛽𝛽𝑏𝑏𝑏𝑏,𝑦𝑦𝑦𝑦𝑦𝑦

 (15) 

 
The stiffness described by Eq. 15 represents the in-plane girder stiffness attributed to each brace 
line in the system. In order to achieve a direct comparison between the FEA results and the 
proposed in-plane girder expression, an appropriate discretization of Eq. 13 was necessary. The 
results of that investigation are presented next.  
 
3.5 Discretization and Evaluation of the Proposed In-Plane Girder Stiffness Expression 
The in-plane stiffness component derived from the system buckling expressions discussed 
previously resulted in a “continuous” stiffness formulation. For consideration in torsional bracing 
problems, a method of discretization is necessary to obtain a stiffness component for use with a 
given bracing line. Two discretization options of the 𝛽𝛽�̅�𝑔 expression were investigated: 𝐿𝐿/𝑛𝑛 and 
𝐿𝐿/(𝑛𝑛+ 1), as shown in Eqs. 16 and 17: 
 
 𝛽𝛽𝑔𝑔 ,𝐿𝐿/𝑛𝑛 = 𝜋𝜋4𝐸𝐸𝐼𝐼𝑥𝑥𝑔𝑔

2𝛼𝛼𝑥𝑥
2𝑛𝑛𝑔𝑔𝐿𝐿4𝑛𝑛

 (16) 

 
 𝛽𝛽𝑔𝑔 ,𝐿𝐿/(𝑛𝑛+1) = 𝜋𝜋4𝐸𝐸𝐼𝐼𝑥𝑥𝑔𝑔

2𝛼𝛼𝑥𝑥
2𝑛𝑛𝑔𝑔𝐿𝐿3 (𝑛𝑛+1)  (17) 

 
𝛽𝛽𝑔𝑔 ,𝐹𝐹𝐸𝐸𝐹𝐹  was calculated using the FEA determined minimum brace stiffness required for buckling 
between the brace points and is therefore highly dependent upon the accuracy of that brace 
stiffness. However, due to the nature of the springs in series expression, slight variations in the 
accuracy of the brace stiffness can lead to large variations of the in-plane girder stiffness 
component.  As a result,  it was determined that the most useful verification approach would be to 
compare the effect of the in-plane girder stiffness on the overall system stiffness (𝛽𝛽𝑇𝑇,𝑒𝑒𝑟𝑟 ) 
represented by Eq. 18 to the known ideal system stiffness (𝛽𝛽𝑇𝑇,𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖) represented by Eq. 19: 
 
 1

𝛽𝛽𝑇𝑇 ,𝑦𝑦𝑒𝑒
= 1

𝛽𝛽𝑏𝑏𝑏𝑏 ,𝑦𝑦𝑦𝑦𝑦𝑦
+ 1

𝛽𝛽𝑔𝑔 ,𝑦𝑦𝑒𝑒
 (18) 

 
 1

𝛽𝛽𝑇𝑇 ,𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑙𝑙
= 1

𝛽𝛽𝑏𝑏𝑏𝑏,𝑦𝑦𝑦𝑦𝑦𝑦
+ 1

𝛽𝛽𝑔𝑔 ,𝐹𝐹𝐹𝐹𝐹𝐹
 (19) 

 
Fig. 8 compares the overall system stiffness predicted when using Eqs. 16 and 17 in Eq. 18 to that 
of the system stiffness determined by FEA.  
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Fig. 8 Comparison of the 𝛽𝛽𝑔𝑔,𝐿𝐿/𝑛𝑛  and 𝛽𝛽𝑔𝑔,𝐿𝐿/(𝑛𝑛+1)  discretization options. 

 
The results depicted in Fig. 8 suggest that the 𝐿𝐿/𝑛𝑛 discretization is typically overly conservative 
and that 𝐿𝐿/(𝑛𝑛+ 1) more accurately represents the system stiffness. As a result, the proposed in-
plane girder stiffness expression for the case of uniform moment and accounting for discretization  
is shown in Eq. 20: 
 
 𝛽𝛽𝑔𝑔 ,2023 = 𝜋𝜋4𝐸𝐸𝐼𝐼𝑥𝑥𝑔𝑔

2𝛼𝛼𝑥𝑥
2𝑛𝑛𝑔𝑔𝐿𝐿3 (𝑛𝑛+1) (20) 

 
The true improvement of the in-plane girder stiffness expression can be best seen by comparing 
the new expression to the original 1993 equation. Fig. 9 demonstrates the scatter of the original 
1993 expression from the wide range of bridges tested. In contrast, the proposed 𝛽𝛽𝑔𝑔,2023  expression 
tightly bounds the data within ~5% of the expected value. 
 

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

0 1 2 3 4 5 6

B
T,

eq
 / 

B T
,id

ea
l (

FE
A

)

Number of Intermediate Braces (n)

Bg,L/n

Bg,L/(n+1)

𝛽𝛽𝑔𝑔 ,𝐿𝐿/𝑛𝑛 
𝛽𝛽𝑔𝑔 ,𝐿𝐿/(𝑛𝑛+1)  

𝜷𝜷
𝑻𝑻,
𝒆𝒆𝒆𝒆

/𝜷𝜷
𝑻𝑻,
𝒊𝒊𝒊𝒊
𝒆𝒆𝒊𝒊
𝒊𝒊 

(𝑭𝑭
𝑭𝑭𝑭𝑭

) 
Conservative 

Unconservative 



 15 

 
Fig. 9 Comparison of 𝛽𝛽𝑔𝑔 ,1993 and 𝛽𝛽𝑔𝑔,2023  expressions. 

 
These results were invariant when comparing the girder spacing, number of intermediate braces, 
unbraced length, and cross-section. Minor variance was observed when sorting the data with regard 
to the number of girders, but the majority of results were still within ~5% of the expression. The 
reason speculated to have caused this variance is that the methodology becomes hyper-sensitive 
as 𝛽𝛽𝑔𝑔 approaches an infinitely stiff component. Thus, a wider bridge with more girders may lead 
the methodology to begin underpredicting the 𝛽𝛽𝑇𝑇. Overall, the results demonstrate that the new 
𝛽𝛽𝑔𝑔 and 𝛽𝛽𝑏𝑏𝑐𝑐,𝑒𝑒𝑒𝑒𝑒𝑒  expressions are able to accurately capture the stiffnesses produced by FEA for a 
variety of conventional bridge systems. 
 
4. Conclusions 
Due to the limited application (twin-girder systems) and unconservative nature of the 1993 in-
plane girder stiffness expression as shown in this paper, adoption of the newly verified in-plane 
girder stiffness expression is recommended. The proposed expression was shown to produce 
values within approximately 5% of the values predicted by finite element analysis. It is also 
recommended that the brace stiffness adjustment factor (𝐶𝐶𝑛𝑛𝑐𝑐) be adopted in order to account for the 
previously unattributed benefits of multiple in-line cross-frames. However, neglecting the benefit 
of multiple in-line cross-frames is a conservative approach. 
 
Further research is currently underway determining the effects of system level moment gradient 
as well as utilizing lateral truss systems and/or deck pour sequencing to produce system-end 
warping restraint, thereby increasing both the system buckling capacity and in-plane girder 
stiffness. 
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