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Abstract 

The objective of this research is to develop accurate analytical equations for cold-formed steel 

lipped channel sections with centered web holes. The proposed equations can be used as an 

alternative to computational methods (e.g., finite strip analysis) for accurately determining critical 

buckling loads or moments, which are inputs to the Direct Strength Method for member design. 

Analytical equations are developed separately for lipped channel sections without holes and 

sections with centered web holes. For each case,  finite strip analyses are performed for over 1000 

lipped channel sections with a wide range of geometric ratios. Equations in the form of polynomial 

ratios are fitted to the analysis results. The effect of hole length on critical local buckling stress is 

considered by proposing a length-dependent correction factor curve fitted to analysis results. 

Proposed analytical equations are found to have excellent prediction accuracy and greatly exceed 

the performance of the current isolated element methods in the AISI S100 Appendix 2. It is 

believed that the proposed equations will effectively reduce the barrier to Direct Strength Method 

and simplify the steps to integrate the method into typical cold-formed steel design workflows. 

 

 

1. Introduction 

Lipped channel sections are widely used in the cold-formed steel (CFS) framing industry (Fig. 1). 

The design of lipped channel CFS members includes checking various buckling limit states, one 

of which is local buckling. In the North American cold-formed steel design specification AISI 

S100 (2020), the default design method to check the local buckling limit state is the Direct Strength 

Method (DSM). To use DSM for local bucking check, engineers are required to first determine the 

elastic critical local buckling stress (𝐹𝑐𝑟ℓ) of the cross-section.  
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Figure 1: Typical lipped channel section annotated with out-to-out dimensions H, B, D, inside corner radius r, and 

uncoated thickness t. 

 

In the current AISI specification, there are two methods for determining elastic critical local 

buckling stress: the numerical method and the element method. Both methods are detailed in 

Appendix 2. The numerical method refers to running finite strip analysis or shell finite element 

analysis to determine section critical local buckling stress. The element methods refer to using 

analytical equations to determine single plate local buckling stress and aggregating the results into 

section-level critical local buckling stresses. Element methods in similar formats are also provided 

in Australian and New Zealand standard AS/NZS 4600 (2018) and Eurocode EN-1993-1-5 (2006). 

Both numerical and element methods have disadvantages in practice. Though capable of 

generating accurate results, the numerical method has a high barrier to entry for practicing 

engineers because it requires software and is not easily integrated with spreadsheet based 

workflows. The element method also has limitations. First, the method is less accurate because it 

ignores interactions between connecting plates and provides limited consideration of hole sizes for 

sections with holes. Second, the method can be complicated to use for bending cases because 

element buckling stresses need to be converted to the same locations on the section and compared 

so that the controlling bucking stress can be selected. Due to these disadvantages, it is desirable to 

develop a new method that is both accurate and easy to use.    

 

2. Buckling stress equations developed from finite strip analysis 

Finite strip analysis is capable of generating critical buckling stress and is relatively inexpensive 

to run; because of these features, finite strip analysis has been used to develop analytical equations 

for buckling stresses in various studies. Seif and Schafer (2010) and Gardner et al. (2019) proposed 

analytical equations for critical local buckling stresses for a variety of hot-rolled structural steel 

shapes, which led to improved accuracy over the equations used in AISC specifications and 

Eurocode. Efforts have been made for cold-formed steel as well: de Miranda Batista (2010) 

proposed equations for buckling coefficients of several CFS sections under pure compression and 

major axis bending, and those equations were adopted in the Brazilian CFS design code. In a recent 

study, Ahdab et al. (2022) proposed a series of local buckling stress equations for a variety of 

loading conditions. Despite the efforts in recent years, there have been only limited studies 
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focusing on developing equations for sections with holes. As holes are ubiquitous in the cold-

formed steel framing industry, accurate and easy-to-use analytical equations for sections with holes 

hold high practical significance for practicing engineers. This study is aimed at leveraging finite 

strip analysis to develop a set of accurate and easy-to-use analytical equations for calculating 

elastic critical local buckling stresses. 

 

3. Existing methods for calculating critical local buckling stress 

Analytical equations are provided in the AISI S100 Appendix 2 to calculate elastic critical local 

buckling stresses of individual elements of a cross-section. To arrive at the section-level local 

buckling stress needed for using DSM, engineers need to follow a procedure involving two steps. 

First, the buckling stresses of individual elements of the cross-section are calculated per equations 

provided in Appendix 2. Second, the section-level local buckling stress is selected among those 

element-level stresses based on whichever leads to the lowest buckling load or moment. In AISI 

S100 Appendix 2, the equations for element-level local buckling stress follow the format of 

classical plate buckling theory as expressed by Eq. 1.  

 

𝐹𝑐𝑟ℓ = 𝑘
𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

𝑤
)

2

 (1) 

 

where 𝑘 is the plate buckling coefficient, 𝐸 is Young’s modulus, 𝜇 is Poisson’s ratio, 𝑡 is plate 

thickness, and 𝑤 is plate flat width.  

 

The plate buckling coefficient defined in Eq. 1 is not only dependent on boundary conditions, but 

also on stress gradients. The plate buckling coefficients under various conditions are summarized 

below.  

 

For stiffened elements under uniform compression 𝑘 = 4. For unstiffened element under uniform 

compression, 𝑘 = 0.43.  

 

For stiffened elements under stress gradient 𝜓: 

(1) For elements with both compression and tension stress 

 𝑘 = 4 + 2(1 + 𝜓)3 + 2(1 + 𝜓)  (2) 

where 𝜓 = |𝑓2/𝑓1|, 𝑓1 is the compression stress and 𝑓2 is the tension stress 

(2) For elements with compression stress only 

 𝑘 = 4 + 2(1 − 𝜓)3 + 2(1 − 𝜓)  (3) 

where 𝜓 = |𝑓2/𝑓1|, 𝑓2 ≤ 𝑓1 

 

For unstiffened elements under stress gradient 𝜓: 

(1) For elements with compression only and stress decreases toward the unsupported edge 

 𝑘 = 0.578/(𝜓 + 0.34)  (4) 

where 𝜓 = |𝑓2/𝑓1|, 𝑓2 ≤ 𝑓1 

(2) For elements with compression only and stress increases toward the unsupported edge 

 𝑘 = 0.57 − 0.21𝜓 + 0.07𝜓2 (5) 

where 𝜓 = |𝑓2/𝑓1|, 𝑓2 ≤ 𝑓1 

(3) For elements with supported edge in tension and unsupported edge in compression 
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 𝑘 = 0.57 + 0.21𝜓 + 0.07𝜓2 (6) 

where 𝜓 = |𝑓2/𝑓1|, 𝑓1 is the compression stress and 𝑓2 is the tension stress 

(4) For elements with supported edge in compression and unsupported edge in tension 

 𝑘 = 1.70 + 5𝜓 + 17.1𝜓2 (7) 

where 𝜓 = |𝑓2/𝑓1|, 𝑓1 is the compression stress and 𝑓2 is the tension stress 

 

 

4. Finite strip analysis study 

A finite strip analysis study is conducted to generate data for developing analytical equations. In 

the study, finite strip analyses are performed on 1228 lipped channel cross sections including both 

commercial SFIA cross-sections and non-commercial sections. The non-commercial sections are 

created within a set of geometric constraints: 0.05 < B/H <0.75, 0.1 < D/B < 0.4, B/t > 8, and D/t 

> 4. For each cross-section, analysis is performed for both a gross section model without a hole 

and a net section model with a centered web hole (Fig. 2). In the net section model, the web portion 

is modeled as two unstiffened elements. Standard hole sizes are used in the models, which are 

referenced from AISI S240 (2020) and SFIA (2018). Specifically, the hole width is 0.75 in. (19 

mm) if a section is shallower than 2.5 in. (63.5 mm). If a section depth is equal to or deeper than 

2.5 in. (63.5 mm), the hole width is 1.5 in. (38 mm). The hole length is 4 in. (102 mm) regardless 

of section depth. Additionally, analysis is performed separately for four different loading 

conditions: pure compression, major-axis bending, minor-axis bending with lip in compression, 

and minor-axis bending with lip in tension. The critical local buckling mode is determined using 

a two-step method proposed by Li and Schafer (2010).  

 

 

 
Figure 2: Finite strip models of lipped channel sections without hole (left) and with a centered web hole (right) 

 

For sections with holes, determining the elastic critical local buckling stresses requires considering 

the influence of hole length. An approximate approach proposed by Moen and Schafer (2009) is 

used in this study. Specifically, for each finite strip analysis, the critical local buckling half-

wavelength 𝐿𝑐𝑟ℓ is compared against the hole length 𝐿ℎ. If 𝐿𝑐𝑟ℓ ≤ 𝐿ℎ, the local buckling stress 

corresponding to 𝐿𝑐𝑟ℓ is selected as the section critical local buckling stress 𝐹𝑐𝑟ℓ. If 𝐿𝑐𝑟ℓ > 𝐿ℎ, the 

local buckling stress corresponding to 𝐿ℎ is selected instead as the section 𝐹𝑐𝑟ℓ. This approach 
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avoids the need for expensive finite element analysis using shell elements and has been included 

in the Commentary of Appendix 2 in the AISI S100.  

 

5. Develop analytical equations from finite strip analysis 

The target analytical equations are formulated as classical plate buckling equations with custom-

defined plate buckling coefficients as expressed in Eq. 8. Analytical equations are developed for 

the plate buckling coefficients, which depend on a variety of parameters including type of loading, 

cross-section geometric ratio, stress gradient, and hole dimension. The main focus is developing 

equations for predicting plate buckling coefficients given cross-sections and types of loading. 

Local buckling stresses determined from finite strip analysis are converted to corresponding plate 

buckling coefficients and serve as data for curve-fitting.  It is worth noting that centerline 

dimensions (see Fig. 3) are used in all proposed analytical equations.  

 

𝐹𝑐𝑟ℓ = 𝑘𝑤

𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

𝑤
)

2

 (8) 

where 𝐹𝑐𝑟ℓ is elastic critical local buckling stress, and 𝑘𝑤 is plate buckling coefficient 

 

 
Figure 3: Centerline dimensions of lipped channel sections 

 

2.1 Sections without holes 

Using the finite strip analysis data, analytical equations are proposed for lipped channel sections 

without holes under different loading conditions. The general format of the proposed equations is 

a classical plate buckling equation with the plate buckling coefficient defined by additional 

equations. The choice of plate buckling coefficient varies among loading conditions. For pure 

compression and minor axis bending with lip in tension, the web plate buckling coefficient is used. 

For minor axis bending with lip in compression, the flange plate buckling coefficient is used. For 

the major axis bending, the plate buckling coefficient is the web coefficient or flange coefficient 

dependent on the geometric ratio ℎ/𝑏. The empirical equations of the plate buckling coefficients 

are expressed as ratios of polynomials. The parameters of polynomials include geometric ratios 

(e.g., web depth over flange width) and stress gradients. It is worth noting that applicable limits 

are also provided for each proposed equation. The limits are based on the coverage of the finite 

strip analysis data in various parameter domains.  

 

The proposed equations are summarized as follows: 
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For pure compression 

 

 

𝐹𝑐𝑟ℓ = 𝑘ℎ

𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

ℎ
)

2

 

 

(9) 

𝑘ℎ = 4 +
1.2𝜂ℎ

1 + 0.22𝜂ℎ + 0.05𝜂ℎ
2 (10) 

where 

𝜂ℎ = ℎ/𝑏 

 

Applicable for 1.2 ≤ 𝜂ℎ ≤ 22 and 𝑟/𝑡 ≥ 1.5 

 

 

 

For major axis bending 

 

 

When 1.2 ≤ 𝜂ℎ < 2.30 
 

𝐹𝑐𝑟ℓ = 𝑘𝑏

𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

𝑏
)

2

 (11) 

When 𝜂ℎ ≥ 2.30  

𝐹𝑐𝑟ℓ = 𝑘ℎ

𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

ℎ
)

2

 (12) 

 

𝑘𝑏 =
4.93 − 3.15𝜂ℎ + 0.53𝜂ℎ

2

1 − 0.64𝜂ℎ + 0.11𝜂ℎ
2  

 

(13) 

𝑘ℎ =
−4.3𝜂ℎ + 6.44𝜂ℎ

2

1 − 0.54𝜂ℎ + 0.24𝜂ℎ
2 (14) 

 

where 

𝜂ℎ = ℎ/𝑏 

 

Applicable for 1.2 ≤ 𝜂ℎ ≤ 22 and 𝑟/𝑡 ≥ 1.5 
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For minor axis bending with lip in compression 

 

 

𝐹𝑐𝑟ℓ = 𝑘𝑏

𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

𝑏
)

2

 

 

(15) 

𝑘𝑏 = 𝑘𝑏1 + 𝑘𝑏2 (16) 

 

𝑘𝑏1 = 4 +
0.8 − 0.758𝜂𝑏 + 0.234𝜂𝑏

2

1 − 0.533𝜂𝑏 + 0.09𝜂𝑏
2  

 

(17) 

𝑘𝑏2 = {

0 𝜂𝑏 ≤ 2.75
(4𝜂𝑏 − 11)𝜓 2.75 < 𝜂𝑏 ≤ 6
13𝜓 𝜂𝑏 > 6

 

 

(18) 

where 

𝜂𝑏 = 𝑏/𝑑 

𝜓 = |𝑓2/𝑓1| 
𝑓1 = Maximum compression stress in flange element 

𝑓2 = Maximum tension stress in flange element 

 

Applicable for 2.5 ≤ 𝜂𝑏 ≤ 11.1 , 0.07 ≤ 𝜓 ≤ 0.77, 𝑑/𝑡  ≥ 4.4 

and 𝑟/𝑡 ≥ 1.5 

 

 

 

For minor axis bending with lip in tension 

 

 

𝐹𝑐𝑟ℓ = 𝑘ℎ

𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

ℎ
)

2

 

 

(19) 

𝑘ℎ = 4 +
1.36 − 0.014𝜂ℎ

1 − 0.12𝜂ℎ + 0.012𝜂ℎ
2 

 

(20) 

where 

𝜂ℎ = ℎ/𝑏 

 

Appliable for 1.2 ≤ 𝜂ℎ ≤ 22 and 𝑟/𝑡 ≥ 1.5 

 

 

 

The proposed equations are found to have excellent accuracy and consistency. As shown in Fig. 

4, the proposed equations match well with analysis data for all loading conditions considered in 

this study. Additionally, calculations are performed to determine the finite strip to predicted ratios, 

which are the ratios of local buckling stresses determined from finite strip analysis (𝐹𝐹𝑆𝑀) over the 

counterparts predicted by the proposed equations (𝐹𝑝𝑟𝑒𝑑). The mean finite strip to predicted ratios 

range from 0.99 to 1.02 and the corresponding COV range from 0.01 to 0.05 (see Table 1).   
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The proposed equations show clear improvements over the existing AISI analytical equations. In 

Fig. 5, comparison is made between the distributions of 𝐹𝐹𝑆𝑀  to 𝐹𝑝𝑟𝑒𝑑  ratios under proposed 

equations and those under existing AISI equations. The ratios under the existing AISI equations 

are generally conservative and spread across wide spectrums. In comparison, the ratios under the 

proposed equations are generally within a range between 0.95 and 1.05.  

 

 
Pure compression 

 
 

Major axis bending 

  

 

Minor axis bending with lip in compression 

 

Minor axis bending with lip in tension 

 
Figure 4: Proposed equations for sections without holes compared to finite strip analysis data 
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Pure compression 

 

Major axis bending 

 
 

Minor axis bending with lip in compression 

 

 

Minor axis bending with lip in tension 

 
 

Figure 5: Histogram of the accuracy of the proposed equations for sections without holes 

 

 
Table 1: Statistical summary of proposed equations for sections without holes 

  SFIA (n=244) Non-commercial (n=984) 

Loading case Mean COV Mean COV 

Pure compression 1.00 0.02 1.00 0.02 

Major axis bending 0.99 0.05 1.00 0.02 

Minor axis bending with lip in compression 1.02 0.02 1.00 0.02 

Minor axis bending with lip in tension 1.00 0.02 1.00 0.01 

 

 

5.2 Sections with centered web holes 

Using the finite strip analysis data, analytical equations are proposed for lipped channel sections 

with centered web holes. Similar to the proposed equations for sections without holes, the 

equations herein are formulated as classical plate buckling equations with newly defined plate 

buckling coefficients. Different from sections without holes, the plate buckling coefficients for 

sections with holes are expressed as a product of two parameters 𝑘𝑤0 and 𝐶ℎ𝑠. The parameter 𝑘𝑤0 

corresponds to the plate local coefficient responsible for the local buckling stress without 

considering the limit of hole length. Depending on the type of loading, 𝑘𝑤0 can be expressed as 

either 𝑘ℎ𝑟0 (unstiffened web) or 𝑘𝑏0 (flange). The parameter 𝐶ℎ𝑠 is the hole length modification 

factor corresponding to standard web hole length. For each loading type, analytical equations are 

proposed for 𝑘𝑤0 and 𝐶ℎ𝑠.  

 

For the case of minor-axis bending with lip in compression, the same equation proposed for 

sections without holes can be re-used for sections with centered web holes, because the cross-

section’s web is under tension.  
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The proposed equations are summarized as follows: 

 

For pure compression 

 

 

𝐹𝑐𝑟ℓ = 𝑘ℎ𝑟

𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

ℎ𝑟
)

2

 

 

(21) 

khr = 𝐶ℎ𝑠𝑘ℎ𝑟0 

 

(22) 

𝑘ℎ𝑟0 =
1.02

1 + 0.04𝜂ℎ𝑟
3 ≥ 0.43 (23) 

 

𝐶ℎ𝑠 =
0.14𝜌𝑑 + 0.15

𝜌𝑑 − 0.05 
≥ 1 

 

(24) 

where 

𝜂ℎ𝑟 = 𝑏/ℎ𝑟 

𝜌𝑑 = 𝑑ℎ/ℎ 

 

Applicable to 𝜂ℎ𝑟 ≤ 3, 0.09 ≤ 𝑑ℎ/ℎ ≤ 0.52, and 𝑟/𝑡 ≥ 1.5 

 

 

 

For major axis bending 

 

 

𝐹𝑐𝑟ℓ = 𝑘𝑏

𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

𝑏
)

2

 

 

(25) 

𝑘𝑏 = 𝐶ℎ𝑠𝑘𝑏0 

 

(26) 

When 𝜂ℎ𝑟𝑝 < 0.30  

𝑘𝑏0 =
2.952𝜂ℎ𝑟𝑝

2

1 − 2.142𝜂ℎ𝑟𝑝
2  (27) 

When 𝜂ℎ𝑟𝑝 ≥ 0.30  

𝑘𝑏0 =
0.152 + 6.974𝜂ℎ𝑟𝑝

3

1 + 1.277𝜂ℎ𝑟𝑝
3  (28) 

 

𝐶ℎ𝑠 =
0.502𝜌𝑑

∗ + 0.093

𝜌𝑑
∗ − 0.055

≥ 1 

 

(29) 

where 

𝜂ℎ𝑟𝑝 = (𝑏/ℎ𝑟)(1 − 0.75𝜓),  

𝜓 = |𝑓2/𝑓1| 
𝑓1 = Maximum compression stress in the unstiffened web element 

𝑓2 = Minimum compression stress in the unstiffened web element 
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𝜌𝑑
∗ = 𝑑ℎ/(ℎ − 0.3𝑏 − 0.3𝑑) 

 

Applicable for 𝜂ℎ𝑟𝑝 ≤ 2, 0.09 ≤ ψ ≤ 0.52, 0.09 ≤ 𝑑ℎ/ℎ ≤ 0.52, and 

𝑟/𝑡 ≥ 1.5  

 

 

For minor axis bending with lip in compression, the same equations developed for sections without 

holes also apply herein.  

 

 

For minor axis bending with lip in tension 

 

 

𝐹𝑐𝑟ℓ = 𝑘ℎ𝑟

𝜋2𝐸

12(1 − 𝜇2)
(

𝑡

ℎ𝑟
)

2

 

 

(30) 

𝑘ℎ𝑟 = 𝐶ℎ𝑠𝑘ℎ𝑟0 

 

(31) 

When 𝜂ℎ𝑟 < 0.4  

𝑘ℎ𝑟0 =
1.15𝜂ℎ𝑟

0.05 + 𝜂ℎ𝑟
≥ 0.43 (32) 

When 𝜂ℎ𝑟 ≥ 0.4  

𝑘ℎ𝑟0 = 1.04 − 0.04𝜂ℎ𝑟 ≥ 0.43 (33) 

 

𝐶ℎ𝑠 =
0.11𝜌𝑑 + 0.15

𝜌𝑑 − 0.05
≥ 1 

 

(34) 

where 

𝜂ℎ𝑟 = 𝑏/ℎ𝑟 

𝜌𝑑 = 𝑑ℎ/ℎ 

 

Applicable for 𝜂ℎ𝑟 ≤ 3, 0.09 ≤ 𝑑ℎ/ℎ ≤ 0.52, and 𝑟/𝑡 ≥ 1.5 

 

 

 

The proposed equations are found to have good accuracy and low variation. According to Table 2, 

the mean 𝐹𝐹𝑆𝑀 to 𝐹𝑝𝑟𝑒𝑑 ratios for all four loading types are between 0.99 and 1.01 and the COV 

falls within the range of [0.01, 0.06]. The proposed equations for 𝑘𝑤0 and 𝐶ℎ𝑠 match well with the 

finite strip analysis data as shown in Fig. 6, where the proposed equations are compared with the 

data. As evidenced by Fig. 7, the performance of the proposed equations greatly exceeds that of 

the existing AISI equations for sections with holes. The existing AISI equations show inconsistent 

accuracy and high variations in performance across the dataset. In comparison, the proposed 

equations show high accuracy and low variation.   
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Pure compression 

  
 

Major axis bending 

  
 

Minor axis bending with lip in tension 

  
Figure 6: Proposed equations for sections with centered web holes compared to finite strip analysis data 
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Pure compression 

 

Major axis bending 

 
 

Minor axis bending with lip in compression 

 

 

Minor axis bending with lip in tension 

 
Figure 7: Histogram of the accuracy of the proposed equations for sections with centered web holes 

 

 
Table 2: Statistical summary of proposed equations for sections with centered web holes 

  SFIA (n=244) Non-commercial (n=984) 

Loading case Mean COV Mean COV 

Pure compression 1.00 0.04 1.00 0.04 

Major axis bending 0.99 0.06 1.01 0.05 

Minor axis bending with lip in compression 1.01 0.03 1.00 0.02 

Minor axis bending with lip in tension 1.00 0.01 1.00 0.02 

 

 

5.3 Application to non-standard hole lengths 

Although this study prioritizes maximizing accuracy for standard hole lengths, the proposed 

equations can be modified to apply to members with non-standard hole lengths. For non-standard 

hole lengths, the non-standard hole length modification factor 𝐶ℎ  is used in lieu of 𝐶ℎ𝑠  in the 

proposed equations. The value of 𝐶ℎ can be approximately determined using 𝐶ℎ𝑠 as expressed in 

Eq. 35 and 36.  

 

When 𝐿ℎ ≤ 𝐿ℎ𝑠 

𝐶ℎ = 𝐶ℎ𝑠 (35) 

 

When 𝐿ℎ > 𝐿ℎ𝑠 

𝐶ℎ = {
1 + (𝐶ℎ𝑠 − 1) (

𝐿𝑐𝑟ℓ,ℎ − 𝐿ℎ

𝐿𝑐𝑟ℓ,ℎ − 𝐿ℎ𝑠
)

2

𝐿ℎ < 𝐿𝑐𝑟ℓ,ℎ 

1 𝐿ℎ ≥ 𝐿𝑐𝑟ℓ,ℎ 

 (36) 

where 𝐿ℎ is hole length, 𝐿ℎ𝑠 = 4 in. (102 mm) and 𝐿𝑐𝑟ℓ,ℎ is the half-wavelength of critical local 

buckling for a section with a centered web hole  
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The expression of 𝐶ℎ considers two scenarios. When non-standard hole length is shorter than or 

equal to the standard hole (𝐿ℎ ≤ 𝐿ℎ𝑠), 𝐶ℎ can be conservatively set to be equal to 𝐶ℎ𝑠 because a 

shorter hole length leads to higher critical local buckling stress. When non-standard hole length is 

longer than the standard hole length (𝐿ℎ > 𝐿ℎ𝑠), the value of 𝐶ℎ depends on 𝐿𝑐𝑟ℓ,ℎ, which is the 

local buckling half wavelength, without considering the limit of hole length. If 𝐿ℎ is greater than 

𝐿𝑐𝑟ℓ,ℎ, no modification is needed (𝐶ℎ = 1), because one full half wavelength of local buckling fits 

within the hole length. If 𝐿ℎ is not greater than 𝐿𝑐𝑟ℓ,ℎ, parabolic interpolation is used between 𝐶ℎ 

= 1 and 𝐶ℎ = 𝐶ℎ𝑠. In Fig. 8, the performance of the 𝐶ℎ equation compared with finite strip analysis 

data. The proposed 𝐶ℎ equation is found to work well for the cases in Fig. 8.  

 

 
Figure 8: Proposed non-standard hole length modification factor compared to a set of finite strip analysis data 

 

 

6. Conclusions 

This paper presents a new set of analytical equations for determining elastic critical local buckling 

stresses of lipped channel sections with and without centered web holes. Developed empirically 

from a large set of finite strip analyses, the proposed equations inherently consider plate 

interactions and provide explicit considerations of hole dimensions. Compared to the existing AISI 

analytical equations, the proposed equations come with significant improvements in accuracy and 

consistency. It is believed that incorporation of the proposed equations into the new editions of the 
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AISI specification will greatly simplify the process of using DSM in a cold-formed steel structural 

design workflow. 
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