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Abstract 
All methods of design for stability strike a balance between analytical accuracy and simplicity. 
The direct analysis method defined in the AISC Specification is a robust method of design that has 
been calibrated and validated to a range of numerical and experimental results. Use of the direct 
analysis method is advantageous for engineers because it eliminates the need to calculate effective 
length factors. However, aspects of the method, such as the application of notional loads and 
stiffness reductions, can be cumbersome in practice. Simplifications to reduce design burden exist 
but could be expanded with evidence showing that the expanded simplifications do not 
compromise safety. Thus, data showing how potential simplifications affect the analytical 
accuracy of methods of stability design is needed. The objective of this study is to generate the 
necessary data for several potentially beneficial simplifications. Differences in maximum 
permitted applied loads are evaluated between methods of design with and without the 
simplifications. Differences are quantified for a suite of simple frames, each featuring a single 
structural steel beam-column but with different member slenderness, boundary conditions, and 
leaning column load. The results indicate that some simplifications such as neglecting stiffness 
reductions are not safe in general but can be employed safely for defined ranges of structures and 
conditions. These simplifications, once implemented after further development into design 
provisions, will enable engineers to focus their efforts on other aspects of the design.  
 
 
1. Introduction 
The direct analysis method defined in Chapter C of the American Institute of Steel Construction 
(AISC) Specification for Structural Steel Buildings (AISC 2022) has rules for calculation of 
required strengths and for calculation of available strengths. Required strengths must be calculated 
using a second-order analysis, initial system imperfections must be considered, and adjustments 
to stiffness must be made. While the use of second-order analysis is generally not problematic 
because many modern structural analysis software packages have this capability, the other two 
requirements can be cumbersome or inconvenient to apply in design.  
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Methods of design for stability have evolved over time, but it has long been recognized that 
second-order effects, geometric imperfections, and partial yielding affect the strength of structural 
steel frames. Thus, geometrically and materially nonlinear analysis with imperfections included, 
commonly abbreviated as GMNIA, often serves as the best approximation of true behavior and is 
used to produce benchmark data to assess methods of design based on simpler analysis approaches. 
Important studies that developed and validated the effective length method (Kanchanalai 1977) 
and the direct analysis method (Surovek-Maleck and White 2004) used GMNIA in this way.  
 
Putting safety first is a fundamental principle of engineering. Accordingly, the development of 
new methods of design tends to focus on safety and limiting unconservative error. Accounting for 
geometric imperfections in an analysis to determine required strengths will never be unsafe. Yet, 
second-order effects, geometric imperfections, and partial yielding don’t affect all structural steel 
frames equally. Because of this, further development of methods of design often focuses on 
identifying simplifications that enable engineers to perform design more efficiently while 
maintaining safety. 
 
The AISC Specification (2022) includes several exceptions and simplifications to methods of 
design for stability. Section C2.2b(d) allows initial system imperfections to be neglected in load 
combinations with lateral load if the ratio of maximum second-order drift to maximum first-order 
drift is below a certain limit. Section 7.2.3(b) allows the use of an effective length factor of one 
for moment frames if the ratio of maximum second-order drift to maximum first-order drift is 
below a different limit. 
 
Engineers recognize when their effort to implement certain design provisions has little to no impact 
on the result. Often, specific provisions of the direct analysis method have no effect on the final 
design of moment frames since the design of moment frames is often governed by drift limit 
requirements. During the 2021 Innovations for Research-to-Industry Stability Engagement (I-
RISE) Summit hosted by the Structural Stability Research Council and AISC, engineers 
communicated their frustration with some provisions of the direct analysis method. Thus, even 
though some exceptions and simplifications exist, more would be helpful and more can likely be 
developed.  
 
Furthermore, some existing exceptions and simplifications may not be conveyed as well as they 
could be. The main benefit of the direct analysis method is the use of the unbraced length, L, as 
the effective length, Lc (equivalently expressed as setting the effective length factor, K, equal to 
1). Yet, AISC Specification (2022) Section 7.2.3 allows the use of K = 1 for braced frames and 
moment frames when the ratio of maximum second-order drift to maximum first-order drift is less 
than 1.1. Engineers seeking to optimize their design process will use these rules to avoid the 
stiffness reduction requirements in the direct analysis method. A more consistent and uniform 
approach may be to have an exception to the stiffness reductions in the direct analysis method 
under certain circumstances. Nonetheless, any simplification must be rigorously justified with 
data. Recognizing the need, AISC funded a research project to investigate potential improvements 
to the direct analysis method. This study is among the first steps of that research project.  
 
In this study, several potential simplifications to the direct analysis method are evaluated to 
quantify the error that they introduce. Error is measured by differences in maximum permitted 
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applied loads between methods of design with and without the simplifications and for many small 
frames, each featuring a single structural steel beam-column. In this approach, the methods with 
simplifications are compared to methods that were calibrated to the results of GMNIA, but not to 
results of GMNIA directly. While the simplifications investigated in this study would be unsafe if 
applied to all cases, the data presented can serve as a guide to crafting provisions that enable their 
use as broadly as possible without compromising safety.  
 
2. Methods 
Methods of design are evaluated in this study for the simple generic sidesway uninhibited frame 
shown in Fig. 1. The frame has a single structural steel beam-column with rotational springs at the 
top and bottom, a leaning column, and a simply supported beam connecting the columns. The 
frame and all members are braced against out-of-plane deformations and buckling. Slenderness of 
the beam-column is controlled by selection of the cross section and length, L. Rotational restraint 
of the beam-column, which in a moment frame would be provided by the beams framing into the 
beam-column, is controlled by the stiffness of the rotational springs at the top and bottom of the 
beam-column, kθ,top and kθ,bot, respectively. The magnitude of leaning column load is controlled by 
the parameter γ. This frame has been used in previous studies on methods of design (Denavit 2021; 
Denavit et al. 2016) and is an abstracted version of frames used in other studies (Kanchanalai 1977; 
Surovek-Maleck and White 2004). 
 

 
Figure 1: Schematic of frame used in this study 

 
Comparisons between methods of design are made in this study at the applied load level, thus pairs 
of factored applied loads P and H must be calculated such that they are at a maximum while also 
satisfying the strength design requirement given by the interaction equation of AISC Specification 
(2022) Section H1.1, presented here as Eqs. 1a and 1b noting that load and resistance factor design 
(LRFD) is used and the beam-column is subject to single-axis flexure.  
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where ϕPn is the design compressive strength calculated according to AISC Specification (2022) 
Chapter E for the limit state of flexural buckling in the plane of the frame and using Lc = L and a 
resistance factor ϕ = 0.9; ϕMn is the design flexural strength calculated according to AISC 
Specification (2022) Chapter F for the limit state of flexural yielding for bending in the plane of 
the frame and using a resistance factor ϕ = 0.9; and M2 is the required flexural strength. 
 
The required flexural strength, M2, is the maximum moment in the structural steel beam-column 
as determined from a second-order elastic analysis performed according to the requirements of the 
method of design under consideration. Second-order elastic analyses are performed in this study 
using closed-form solutions to Eq. 2. 
 

    *
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where v is the lateral deflection of the beam-column and EI* is the flexural stiffness of the beam-
column, including adjustments where required.  
 
Closed-form solutions to Eq. 2 were developed in previous work using a computer algebra system 
and implemented in MATLAB to enable quick evaluation (Denavit et al. 2016). Quick evaluation 
is necessary to enable iterative back-calculation of the largest applied loads, P and H, that satisfy 
Eqs. 1a and 1b. Note that Eq. 2 only accounts for flexural deformations, but that flexural 
deformations dominate the response of the frames investigated in this study. Closed-form solutions 
to Eq. 2 were also used to compute the ratio of maximum second-order drift to maximum first-
order drift, Δ2/Δ1. 
 
2.1 Base Direct Analysis Method 
A base version of the direct analysis method is used in this study as a benchmark against which 
simplifications to the direct analysis method are measured. In this base version of the direct 
analysis method required strengths are computed using second-order elastic analysis; initial system 
imperfections are considered by applying a notional lateral load of 0.002P (i.e., the lateral load in 
the analysis is H + 0.002P); a factor of 0.8 is applied to the stiffness of the beam-column and the 
rotational springs; and an additional factor of τb given by Eqs. 3a and 3b is applied to the flexural 
stiffness of the beam-column.  
 
When P/Py ≤ 0.5 
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where Py is the cross-sectional compressive strength equal to FyAg where Fy is the yield stress and 
Ag is the gross area of the member.  
 
AISC Specification (2022) Chapter C currently allows some simplifications to the direct analysis 
method. For example, the notional load need not be applied in combination with lateral loads when 
the ratio of maximum second-order drift to maximum first-order drift, Δ2/Δ1, is equal to or less 
than 1.7. Results are presented both with the use of this existing simplification and without it.   
 
2.2 Alternate Direct Analysis Methods 
Five alternate versions of the direct analysis method are evaluated in this study. The alternate 
versions, described in Table 1, include simplifications related to the notional load, adjustments to 
stiffness, or both.  
 

Table 1: Details of alternate direct analysis methods 

Method Notional Load 
Beam-Column  

Flexural Stiffness 
Rotational Spring 

Stiffness 
Base 0.002P 0.8τbEI 0.8kθ,top and 0.8kθ,bot 

Alternate 1 0.002P 0.8EI 0.8kθ,top and 0.8kθ,bot 
Alternate 2 0.002P τbEI kθ,top and kθ,bot 
Alternate 3 0.002P EI kθ,top and kθ,bot 
Alternate 4 None 0.8τbEI 0.8kθ,top and 0.8kθ,bot 
Alternate 5 None EI kθ,top and kθ,bot 

 
Alternate methods 1, 2, and 3 are used to investigate the effect of not applying the adjustments to 
stiffness required by the AISC Specification (2022). Note that according to AISC Specification 
(2022) Section C2.3(c), τb can be neglected (i.e., set equal to unity) if additional notional load is 
applied. Alternate method 1 simply neglects τb and does not apply additional notional load. 
Alternate method 2 neglects the 0.8 reduction factor but still includes the τb reduction factor. The 
0.8 reduction factor applies to both the beam-column flexural stiffness and the stiffness of the 
rotational springs since they both contribute to the stability of the structure. Alternate method 3 
neglects both the 0.8 and τb reduction factors; thus, the nominal stiffness of the beam-column and 
rotational springs are used in the second-order elastic analysis. Alternate method 4 is used to 
investigate the effect of not considering initial system imperfections (i.e., no notional load). 
Alternate method 5 is used to investigate the effect of not applying the adjustments to stiffness and 
not considering initial system imperfections. These alternate versions of the direct analysis method 
are not safe for all cases and should not be used generally in practice. However, they can be used 
safely in some cases and the purpose of this study is to quantify the error associated with the 
simplifications so that suitable provisions can be developed. 
 
3. Example Frame 
Results for an example frame are presented in Fig. 2. The frame has a W12×72 steel beam-column 
oriented to bend about its major axis. The yield strength of the member is Fy = 50 ksi. The member 
is compact for flexure and nonslender for compression, therefore local buckling does not need to 
be considered. The length of the columns is 17.8 ft based on a slenderness, L/r = 40. The top of 
the beam-column is fixed against rotation (i.e., kθ,top = ∞), the base of the beam-column is pinned 
(i.e., kθ,bot = 0), and the frame has no leaning column load (i.e., γ = 0). 
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Fig. 2 shows results for two cases. For subplots on the left-hand side (i.e., a, c, and e), the base 
method and alternate methods 1, 2, and 3 have notional loads equal to 0.002P. For subplots on the 
right-hand side (i.e., b, d, and f), the base method and alternate methods 1, 2, and 3 have notional 
loads equal to 0.002P only when the ratio of maximum second-order drift to maximum first-order 
drift, Δ2/Δ1 > 1.7. No notional loads are applied when Δ2/Δ1 ≤ 1.7 as permitted by AISC 
Specification (2022) Section C2.2b(d), noting that lateral load was applied to the frame when Δ2/Δ1 
≤ 1.7. 
 
The interaction diagrams shown in subfigures a and b of Fig. 2 represent maximum permitted 
applied loads for the various design methods. The loads applied to the frame are P and H. The 
lateral load H is converted to a moment by multiplying by the column length L then normalized 
by the plastic moment, Mp (i.e., the product of the yield stress and the plastic section modulus). 
The applied load interaction diagram for the base method is the smallest. All the alternate methods 
permit pairs of applied loads that are not permitted by the base method. This is expected given that 
the alternate methods have less stiffness reduction, less notional load, or both. When the exception 
for notional loads for Δ2/Δ1 ≤ 1.7 is used, horizontal shifts in the applied load interaction form 
(Fig. 2b). The horizontal shifts occur when Δ2/Δ1 = 1.7. For lower axial loads (i.e., Δ2/Δ1 ≤ 1.7) 
the notional load is not applied, allowing a larger value of H to be applied. The shift occurs at 
different axial loads for different methods due to the different stiffness reductions applied. For a 
given frame configuration and flexural stiffness, there is a one-to-one relationship between axial 
load, P, and the ratio of second-order drift to first-order drift, Δ2/Δ1. This relationship is shown in 
Fig. 2c and Fig. 2d. These two figures are identical since Δ2/Δ1 does not depend on the notional 
load. The x-axis of the figures was limited to a maximum of 3, but much larger values of Δ2/Δ1 
were recorded at higher axial loads. Several of the lines overlap since the relationship depends 
only on the frame configuration and flexural stiffness of the beam-column.  
 
Error results are shown in Fig. 2e and Fig. 2f. The error is computed between the base interaction 
diagram and the alternate interaction diagrams using a radial measure. For a given angle with 
respect to the x-axis, a radial line is drawn from the origin to the applied load interaction diagrams. 
The distance from the origin to the interaction diagram for the base is rbase and the distance from 
the origin to the interaction diagram for the alternate design method is ralternate as shown in Fig. 3. 
The error is computed using Eq. 4.  
 

 base alternate

base

r r

r
 
  (4) 

 
Negative values of error, ε, indicate that the alternate design method permits applied loads that are 
deemed unsafe by the base design method, and thus negative error is considered unconservative.  
 
Other definitions of error are possible. For example, the error could be defined as the difference 
between maximum permitted horizontal loads at a given level of axial load. The value of error 
tends to be higher using this measure and it may be more reflective of the behavior of moment 
frames where the axial load in a member is relatively constant. However, using this measure, the 
error is undefined for axial loads above the maximum permitted by the base method. The radial 
measure meaningfully quantifies error over the entire interaction diagram.  
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(a) Interaction Diagram 

 
 (b) Interaction Diagram 

No notional load when Δ2/Δ1 ≤ 1.7 
 

 
 (c) Δ2/Δ1 vs P/Py 

 

 
 (d) Δ2/Δ1 vs P/Py  

No notional load when Δ2/Δ1 ≤ 1.7 
 

 
(e) Δ2/Δ1 vs Error 

 

 
(f) Δ2/Δ1 vs Error 

No notional load when Δ2/Δ1 ≤ 1.7 
Figure 2: Results for example frame 

N
or

m
al

iz
ed

 A
xi

al
 C

om
pr

es
si

on
 (

P
/P

y
)

N
o

rm
a

liz
ed

 A
xi

al
 C

o
m

pr
es

si
o

n 
(P

/P
y
)

1 1.5 2 2.5 3
Ratio of Second-Order Drift to First-Order Drift

0

0.1

0.2

0.3

0.4

0.5

0.6

Base
Alternate 1
Alternate 2
Alternate 3
Alternate 4
Alternate 5

1 1.5 2 2.5 3
Ratio of Second-Order Drift to First-Order Drift

0

0.1

0.2

0.3

0.4

0.5

0.6

Base
Alternate 1
Alternate 2
Alternate 3
Alternate 4
Alternate 5

E
rr

or

E
rr

or



 8

 
Figure 3: Definition of radial error measure 

 
The error is plotted in Fig. 2e and Fig. 2f as a function of the ratio of second-order drift to first-
order drift, Δ2/Δ1, computed for the alternate design method at the point on the interaction diagram 
that corresponds to the angle for which the error was computed. The ratio Δ2/Δ1 was computed at 
each point using the stiffness, including reductions, defined for that point for each method. Vertical 
black dashed lines at Δ2/Δ1 = 1.1, 1.5, and 1.7 are added to the error plots to indicate key values.  
 
The error for the alternate design methods increases with increasing Δ2/Δ1 and thus increasing 
axial compression. Kinks in the error plots are seen for Δ2/Δ1 between about 1.2 and 1.3. These 
are an artifact of the kink in the bilinear design interaction diagram. When the exception for 
notional loads when Δ2/Δ1 ≤ 1.7 is used, large shifts in the error are seen (Fig. 2f). The errors at 
lower Δ2/Δ1 are also lower for some alternate methods when the exception is used.  
 
4. Parametric Study 
The results shown in Fig. 2 provide a detailed view of the effect of simplifications to the base 
method of design for a single example frame. This section presents results for a range of frames. 
The same W12×72 beam-column with Fy = 50 ksi is used for all cases. However, both major-axis 
and minor-axis bending are investigated. Slenderness ratios, L/r of 20, 40 and 80 are analyzed, 
where r is the radius of gyration of the beam-column about its bending axis. Four pairs of rotational 
spring stiffness values are analyzed as listed in Table 2. Leaning column load ratios, γ of 0, 1, 2, 3 
are analyzed. With these variations, 96 different frames are investigated (96 = 2 bending axes × 3 
values of L/r × 4 pairs of rotational spring stiffness × 4 values of γ). The range of frames 
investigated is similar to the range of sway frames investigated by Surovek-Maleck and White 
(2004) in the original development of the direct analysis method. 
 

Table 2: Selected rotational spring stiffness values 
Pair kθ,top kθ,bot 

1 ∞ (fixed) 0 (pinned) 
2 6EI/L 0 (pinned) 
3 ∞ (fixed) ∞ (fixed) 
4 6EI/L 6EI/L 

 

rbase

ralternate
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The error between each alternate method and the base method is computed as described previously 
and plotted vs the ratio of second-order drift to first-order drift for the alternate method in Fig. 4 
and Fig. 6. Each plot in these figures has 96 lines corresponding to the 96 frames investigated. The 
lines are colored based on the values of L/r to provide a rough sense of the slenderness of each 
frame. The results are shown only for Δ2/Δ1 ≤ 1.5 to show detail and since the simplifications 
investigated in this study are less likely to be justifiable for Δ2/Δ1 > 1.5. Subplots on the left-hand 
side of Fig. 4 and Fig. 6 do not employ the exception for notional load when Δ2/Δ1 ≤ 1.7. Subplots 
on the right-hand side of the figures employ the exception for notional load when Δ2/Δ1 ≤ 1.7 
defined in AISC Specification (2022) Section C2.2b(d). Given the radial error measure used in this 
study, the error for an alternate method at a particular value of Δ2/Δ1 is computed in comparison 
to the base at a point that may have a different value of Δ2/Δ1.  
 
4.1 Effect of Neglecting Stiffness Reductions 
The effect of neglecting stiffness reduction is seen by comparing alternate methods 1, 2, and 3 to 
the base direct analysis method as in Fig. 4. Neglecting the additional stiffness reduction factor τb 
causes minimal error for the frames and range of Δ2/Δ1 investigated in this study. Neglecting τb 
only increases the applied load interaction diagram by a few percent and generally for the less 
slender frames.  
 
Neglecting the 0.8 stiffness reduction has a greater impact on the maximum permitted applied 
loads and thus the error is greater. The maximum error increases with increasing Δ2/Δ1. At Δ2/Δ1 
= 1.1, the maximum error is less than 2.5%. The maximum error reaches 5% at about Δ2/Δ1 = 1.25. 
5% is a commonly used limit for unconservative error in methods of design for frame stability 
(ASCE 1997). The AISC Specification (2022) permits design for stability with K = 1 and without 
adjustments to stiffness for moment frames when Δ2/Δ1 ≤ 1.1 under the effective length method. 
The data indicates that the error introduced by this simplification is tolerable.  
 
The maximum error associated with not using the 0.8 stiffness reduction factor for a given Δ2/Δ1 
occurs for the frames with the slenderest beam-columns. Reducing stiffness increases second-order 
effects, which are a larger component of the required strength for slender beam-columns. Fig. 5 
shows a contour plot of the maximum error for alternate method 3 as a function of Δ2/Δ1 and L/r. 
The maximum errors when L/r = 40 are essentially equal to those when L/r = 80 up to 
approximately Δ2/Δ1 = 1.3.  
 
Little difference in error is seen between alternate method 2 and alternate method 3, since the only 
difference is the use of τb which was shown in the results for alternate method 1 to not have a major 
impact on error in the range investigated. 
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(a) Alternate Method 1 

 
(b) Alternate Method 1 

No notional load when Δ2/Δ1 ≤ 1.7 
 

 
 (c) Alternate Method 2 

 

 
 (d) Alternate Method 2 

No notional load when Δ2/Δ1 ≤ 1.7 
 

 
(e) Alternate Method 3 

 

 
(f) Alternate Method 3 

No notional load when Δ2/Δ1 ≤ 1.7 
Figure 4: Computed error for the parametric suite of frames for alternate methods 1, 2, and 3 
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Figure 5: Contour plot showing maximum percent error for alternate method 3 across all frames investigated as a 

function of member slenderness and ratio of second-order drift to first-order drift. The exception to neglect notional 
loads when Δ2/Δ1 ≤ 1.7 was not used for these results.  

 
4.2 Effect of Neglecting Notional Loads 
The effect of neglecting notional loads is seen by comparing alternate methods 4 and 5 to the base 
direct analysis method as in Fig. 6. When the exception to neglect notional load when Δ2/Δ1 ≤ 1.7 
and other lateral loads are applied is used, the effect of fully neglecting notional loads is minimal 
as shown in Fig. 6b. In the range investigated, error is only seen for a few of the stockiest frames 
and only up to a maximum of about 6%. When the exception is not used, the effect of fully 
neglecting notional loads is more significant as shown in Fig. 6a. The maximum error is about 3% 
for Δ2/Δ1 = 1.1 and 10% for Δ2/Δ1 = 1.5. The maximum error reaches 5% at about Δ2/Δ1 = 1.15.  
 
Neglecting both adjustments to stiffness and notional loads as in alternate method 5 results in the 
greatest errors among the alternate methods, as shown in Fig. 6c and Fig. 6d. However, the errors 
are still relatively small when Δ2/Δ1 is small. The maximum error is about 6% when Δ2/Δ1 = 1.1. 
 
Fig. 7 shows a contour plot of the maximum error for alternate methods 4 and 5 as a function of 
Δ2/Δ1 and L/r. The greatest errors for alternate method 3 occur for the frames with the greatest 
member slenderness (Fig. 5). The opposite is seen with alternate method 4, the errors are greatest 
for the frames with the least slender members. For alternate method 5, which combines the 
simplifications of alternate methods 3 and 4 by neglecting both stiffness reductions and notional 
loads, the error is essentially the summation of the errors from alternate methods 3 and 4. For 
example, at L/r = 40 and Δ2/Δ1 = 1.3, the maximum error for alternate method 3 is about -5.5% 
(Fig. 5). For alternate method 4, the maximum error is about -4.5% (Fig. 7a). For alternate method 
5, the maximum error is about -10% (Fig. 7b).  
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(a) Alternate Method 4 

 
(b) Alternate Method 4 

No notional load when Δ2/Δ1 ≤ 1.7 
 

 
 I Alternate Method 5 

 

 
 (d) Alternate Method 5 

No notional load when Δ2/Δ1 ≤ 1.7 
Figure 6: Computed error for the parametric suite of frames for alternate methods 4 and 5 

 
5. Conclusions 
The methods of design for stability of structural steel frames presented in the AISC Specification 
(2022) are rigorous and have been developed over decades to account for the behavioral effects 
and parameters that impact strength. However, effects such as stiffness reductions due to 
inelasticity and parameters such as initial geometric imperfections do not impact all frames 
equally. Simplifications that streamline the design of common structures without compromising 
safety would be warmly received by the design community. To this end, a parametric study was 
performed to quantify and better understand the error that would be introduced by some potential 
simplifications. Error was measured as the difference in maximum permitted applied loads 
between alternate versions of the direct analysis method with simplifications and the base direct 
analysis method without simplifications. Analyses were performed on a wide range of frame 
configurations but only results where the ratio of second-order drift to first-order drift, Δ2/Δ1, was 
less than or equal to 1.5 were investigated. The results show that the additional stiffness reduction 
factor, τb, has little impact in the range investigated and the stiffness reduction in general has only 
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modest impact, especially when Δ2/Δ1 is low. The use of notional loads also has a modest impact. 
The impact of neglecting stiffness reduction was greatest for the slenderest frames, and the impact 
of neglecting notional load was greatest for the least slender frames, however, the errors are 
roughly additive. As a result, neglecting both stiffness reduction and notional load (as in alternate 
method 5) would only be appropriate when Δ2/Δ1 is very low, regardless of member slenderness. 
While no recommendations for design can be made from these results alone, they provide the data 
necessary to guide further research and code development which will eventually lead to helpful 
and justified simplifications to the direct analysis method.  
 

 
 (a) Alternate Method 4 

 
 (b) Alternate Method 5 

Figure 7: Contour plot showing maximum percent error across all frames investigated as a function of member 
slenderness and ratio of second-order drift to first-order drift. The exception to neglect notional loads when Δ2/Δ1 ≤ 

1.7 was not used in the base design method for these results.  
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