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Abstract 

Previous studies have shown that the elastic lateral torsional buckling (LTB) of doubly-symmetric 

I-beams can be significantly affected by web shear. Design solutions were recommended in these 

previous investigations, but the applicability to singly-symmetric girders was not investigated. 

This paper outlines a numerical study on the impact of shear on the LTB behavior of singly-

symmetric I-beams. Eigenvalue buckling analyses were conducted to compare the LTB capacity 

of fully-stiffened, partially-stiffened, and unstiffened beams with webs subjected to cases with 

both constant shear and shear gradient. Numerical parametric studies were conducted to investigate 

the effects of web slenderness ratio, unbraced length-to-depth ratio and ratio of area of top to 

bottom flange on the LTB resistance. The effects of nonlinear geometry on the LTB capacity were 

also studied through large-displacement analyses. The feasibility of proposed design methods 

developed for doubly-symmetric I-beams that account for the reduction of LTB capacity due to 

shear were investigated for singly-symmetric I-beams.  

 

1. Introduction 

Lateral torsional buckling (LTB) is a structural stability limit state when the steel beams are 

subjected to bending moments. The LTB involves both lateral displacement and twist of a steel 

beam that leads to instability. The LTB limit state is often critical to ensure steel stability and 

should be carefully considered in the design of steel structures. Theoretical solutions to determine 

the critical LTB capacity of steel beams (Timoshenko and Gere 1961; Galambos 1968), which are 

presented in detail later, form a solid basis for the modern design methods of steel beams. The 

theoretical solutions assume a rigid web cross-section, which can be violated for slender beams. 

There has been a growing emphasis on accounting for the effects of web distortion in the estimation 

of elastic LTB resistance of steel beams. 

 

Previous studies (Bradford and Trahair 1981; Bradford 1985; Bradford 1992) have shown the 

negative effects of web distortion on the LTB resistance, which refers to the phenomenon of the 

lateral distortional buckling (LDB). LDB is a mode of stability involving the interaction between 

 
1 Postdoctoral fellow, University of Texas at Austin, xiaoyi.chen@utexas.edu  
2 Postdoctoral fellow, Tongji University, liangchen1201@tongji.edu.cn 
3 Jewel McAlister Smith Professor in Engineering, University of Texas at Austin, thelwig@mail.utexas.edu 

* Indicates equal contribution 

mailto:xiaoyi.chen@utexas.edu
mailto:liangchen1201@tongji.edu.cn
mailto:thelwig@mail.utexas.edu


 2 

 
 

 

 

 
 

 
 

 

 
 

 

 

 

LTB  and  web  local  buckling,  which  may  occur  when  beams  are  subjected  to  either  uniform 
moment (zero shear) or moment gradient.

In the case of beams subjected to moment gradient, the effects of shear along the unbraced length 
may also reduce the LTB capacity of steel beams. This mode of instability involves the interaction 
between LTB and web shear buckling. A limited number of investigations have been conducted to 
study  the  effects  of  web  shear  on  the  elastic  LTB  resistance  of  steel  beams.  Bradford  (1992)
numerically investigated the elastic LTB resistance of cantilever beams and noticed that the LTB 
resistance was significantly affected by web distortion, particularly for short beams with slender 
webs. The study conducted by Moore (1995) confirmed the reduction of LTB resistance due to 
shear and indicated that the LTB resistance was negatively affected when the shear exceeded 30% 
of the shear capacity. Liang et al. (2022) investigated the effects of shear on the elastic LTB of 
doubly-symmetric I-beams  under  various  loading  conditions  through  computational  models 
considering a wide range of geometries. The LTB resistance was significantly reduced due to the 
shear  effects  and  the  reduction  of  LTB  was  more  obvious  for  webs  with  higher values  of  the 
slenderness ratio. Phillips et al. (2023) investigated the reduction effects of web shear on the LTB 
capacity through experimental testing.

The  effects  of  web  distortion  are  considered  in  the  design  equation  of  LTB  of  current  design 
specifications  (AASHTO  2020;  AISC  2016)  based  on  Winter’s  approach  (Winter  1943)  by 
neglecting the St. Venant torsional constant (J) for slender webs. The effects of shear on the LTB 
resistance  are  not  considered  in  current  design  specifications.  However,  the  numerical 
investigation by Liang et al. (2022) indicated that the reduction of the elastic LTB resistance was 
dependent on the magnitude of the applied shear relative to the shear buckling capacity. As a result, 
Winter’s approach tends to underestimate the LTB resistance when the shear is relatively small 
and overestimate the LTB when the shear is relatively large. Based on numerical findings, practical 
design methods were proposed to determine the elastic LTB resistance for doubly-symmetric I- 
beams by incorporating a moment reduction factor to account for shear effects.

Despite valuable insights provided by previous studies, the effects of shear on the LTB resistance 
are  not  thoroughly  investigated  and  well-established  in  design  specifications. Although  singly- 
symmetric sections are commonly used in buildings and bridges, relatively few studies have been 
conducted on the effects of shear in these girders. This paper documents a numerical study on the 
effects of shear on the elastic LTB resistance of singly-symmetric I-beams. A brief overview of 
the  design  equations  relevant  to  the  elastic  LTB  of  steel  beams  is  first  presented.  A  numerical 
parametric study is presented to discuss the LTB behavior of singly-symmetric beams with various 
geometries.  The  feasibility  of  proposed  design  equations  developed  for doubly-symmetric  I- 
beams, which is practical by incorporating a moment reduction factor for the elastic LTB resistance 
due to shear effects, is investigated for singly-symmetric I-beams.

2. Background

2.1 Elastic LTB resistance

Current design specifications (AASHTO 2020; AISC 2016) recommend design equations for the 
LTB resistance of steel beams based on classic theoretical solutions with a moment gradient factor. 
Theoretical solutions for the elastic LTB of beams under uniform moment loading are summarized 
as follows:
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• For doubly-symmetric beams, the theoretical solution, Mcr,th, is given by Eq. 1 

(Timoshenko and Gere 1961): 
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• For singly-symmetric beams, the theoretical solution, Mcr,th, is given by Eqs. 2 and 3 which 

assume no web distortion (Galambos 1968): 
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where Lb is the unbraced length; Iy is the second moment of area about the weak axis; E is the 

modulus of elasticity; G is the elastic shear modulus; J is the St. Venant constant; and Cw is the 

warping constant. Specifically for singly symmetric beams, Ix is the second moment of area about 

the strong axis, and yo is the distance between the shear center and the centroid of the section.   

 

To account for the effects of moment gradient along the unbraced length, a moment gradient factor 

Cb is typically multiplied with the theoretical solution of the elastic LTB for beams under uniform 

loading to estimate the buckling capacity of beams subjected to variable moment. The moment 

gradient factor, Cb, can be estimated using Eqs. 4 and 5 for singly-symmetric sections (Helwig et 

al. 1997; Reichenbach et al. 2020): 
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where MA, MB, and MC are the moments at quarter point, centerline, and the three-quarter point of 

the unbraced length, respectively; Mmax is the maximum moment within the unbraced length; Iy,top 

is the second moment of area of the top flange about the weak axis. 

 

2.2 Moment reduction factor on LTB due to shear by Liang et al. (2022) 

Liang et al. (2022) proposed practical design methods to determine the elastic LTB resistance Mcr 

for doubly-symmetric I-beams based on findings from a comprehensive numerical parametric 

study, as shown in Eq. 6. Mcr,th is the theoretical elastic LTB resistance for doubly-symmetric 

beams subjected to uniform moment loading as shown in Eq. 1, and Cb is the moment gradient 

factor as shown in Eqs. 4 and 5. Cmv is the newly-proposed factor to account for the LTB reduction 

due to shear effects, which is given by Eqs. 7 and 8: 
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where Vcr,th is the theoretical solution for the critical shear buckling capacity of either unstiffened 

or stiffened webs (Timoshenko and Gere, 1961); Vst is the shear corresponding to the theoretical 

elastic LTB resistance estimated by CbMcr,th without considering reduction due to shear; and Aw 

and Af are the areas of web and a single flange, respectively. The proposed method is applicable 

for beams subjected to either a constant shear or shear gradient. In the case of a shear gradient, Vst 

can be taken as the average shear values at two ends of the unbraced segment. 

 

3. Development of the Finite Element Model 

Numerical finite element (FE) models of singly-symmetric steel beams were modeled using the 

commercial software Abaqus (Systèmes 2020). Two types of analyses were conducted in the 

present study: 1) eigenvalue buckling analyses to determine the LTB capacity of beams with 

various geometric features under different loading conditions; 2) large-displacement analyses with 

nonlinear geometry and initial imperfections. 

 

3.1 Description of the modeling strategy 

Fig. 1 depicts the schemes of the FE model with different levels of stiffening depending on the 

ratio of the stiffener spacing to web depth. The unstiffened model has no stiffeners along the length 

of the beam, whereas the fully-stiffened model has a stiffener spacing to depth ratio of 0.25. It is 

reasonably deemed that the fully-stiffened beam is exempt from effects of web distortion 

associated with shear effects. Increasing the stiffener spacing ratio significantly above 0.25, results 

in partially-stiffened model, which results in a reduction in the shear-buckling capacity compared 

to fully-stiffened beams. The web stiffeners were modeled with a gap of 2.54 mm (0.1″) to both 

flanges to avoid warping restraints, as depicted in Fig. 1. The webs and the flanges of beams were 

simulated using four-node shell elements designated as S4R available in Abaqus. Upon a 

sensitivity analysis of mesh size, it was deemed reasonable to utilize a global mesh size of 

approximately 25.4 mm (1″). Linear elastic material properties were utilized for both eigenvalue 

buckling analyses and large-displacement analyses. For Grade 50 steel, the yield strength was 

taken as 345 MPa (50 ksi). 

 

The boundary conditions are illustrated on an unstiffened beam model, as shown in Fig. 1. The 

simply-supported boundary conditions were imposed at both ends of the beam. The vertical 

translational movements at the mid-height of the cross-section at both ends were restrained as well. 

The lateral translational movements were restrained along the web at both ends and the brace 

points for stiffened models as well. As a result, the imposed boundary conditions restrained twist 

but allowed warping at the ends of the beam. The assumption of free warping at braced points used 

in this study is consistent with the current design specifications. 

 

Uniformly distributed loads (UDL) along the length of the beam were applied at the mid-height of 

the cross-section to represent self-weight of the beam. Although the self-weight was applied above 

the geometric centroid of singly-symmetric beams, it was deemed reasonable to neglect the effects 
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of load position based on previous findings (Helwig et al. 1997). In addition, various moment 

loading conditions were considered, resulting in zero shear, constant shear and shear gradient along 

the unbraced length. For both ends of the beam, force couples were uniformly applied at top and 

bottom flanges to impose various moment and shear gradient along the unbraced length.  

 

2.54mm (0.1") 
spacing

Ux=0
Uy=0
Uz=0

Fully stiffened
model

Partially stiffened 
model

Unstiffened 
model

Lb

bbf
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h
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Figure 1: FE model in the parametric study. 

 

3.2 An overview of geometric parameters 

For singly symmetric beams, the degree of mono-symmetry is defined by a parameter, top = 

Iytop/Iy, where Iytop is the second moment of area of the top flange about an axis through the web, 

and Iy is the second moment of area of the section about the same axis. In the present study, the 

cross-sections varied to have a degree of mono-symmetry in the range of 0.1 and 0.5. The lower 

bound of this range (top = 0.1) corresponds to the limit value as specified in AASHTO Article 

6.10.2.2 (AASHTO 2020) that top should be larger than 0.091, and the upper bound (0.5) 

corresponds to a doubly-symmetric section. The value of top exceeding 0.5, corresponding to 

singly-symmetric beam sections with a smaller bottom flange than the top flange, was not 

considered in the present study considering that sections with smaller top flanges are more 

common in the structural field. However, the findings from the present study should provide 

insight on the LTB behavior for singly symmetric beams with a value of top exceeding 0.5. The 

unbraced length-to-depth ratio varied as values of 6.7, 10, 15, and 20. 

 

Table 1 summarizes the parameters and corresponding values considered in the present study. All 

cross-sections were prismatic along the unbraced length. The parametric studies considered beam 

sections with a constant web height of 914 mm (36″), and a constant top flange of 

152.4mm×12.7mm (6″× 0.5″). The cross-sections of the bottom flange were changed to achieve 

various degrees of mono-symmetry. In total, eight dimensions of the bottom flange were 

considered. The resulting depth-to-flange width ratio (h/bf) for the bottom flange varied from 3.4 

corresponding to typical rolled I-shaped sections, to 6 corresponding to the limit as specified in 

AASHTO (AASHTO 2020). The top flange had a constant depth-to-flange width ratio of 6. The 

top flange had a constant width-to-thickness ratio (bf/tf) of 12, and for the bottom flange, this ratio 

varied from 6 to 18, which satisfied the definitions of compact flanges for Grade 50 steel to prevent 

local buckling of the flanges (AISC 2016). The web slenderness ratio (h/tw) varied in a relatively 

large range of 30 to 250, including compact, non-compact and slender webs to investigate its 

effects on the LTB resistance. 
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Table 1: Geometric parameters of the FE models. 

Parameter Value 

Stiffener spacing-to-depth ratio (a/h) 0.25(Fully stiffened), 0.5-3.4(partially stiffened), unstiffened 

Unbraced length-to-depth ratio (Lb/h) 6.7; 10; 15; 20 

Depth-to-flange width ratio (h/bf) 6.0 (top flange, h/btf); 3.4-6.0 (bottom flange, h/bbf) 

Width-to-thickness ratio of flange (bf/tf) 12 (top flange btf /ttf); 6-18 (bottom flange bbf/tbf) 

Geometric web slenderness ratio (h/tw) 30; 36; 58; 100; 125; 150; 200; 250 

Degree of mono-symmetry (ρtop) 0.10; 0.16; 0.23; 0.29; 0.33; 0.34; 0.40; 0.50 

Sizes of top flange (btf×ttf) 152.4mm×12.7mm (6″×0.5″) 

Sizes of bottom flange (bbf×tbf) 
btf×ttf; 1.25btf×ttf; 1.5btf×ttf; btf×1.5ttf;  

btf×2ttf; 1.25btf×1.25ttf; 1.5btf×1.5ttf; 1.75btf×1.75ttf 

 

3.3 Types of analysis 

Two types of analyses were conducted in the present study. First, eigenvalue buckling analyses 

were performed under unit load until the occurrence of the LTB, and the critical LTB moment was 

determined. Second, the large-displacement analyses were conducted with nonlinear geometry and 

imperfections. The imperfections were determined by first conducting a linear eigenvalue buckling 

analysis to obtain the eigenvector displacement results of all nodes corresponding to the first 

buckling mode. An Abaqus/Standard analysis was then conducted with the displacement results 

of the first eigenvector imported to the model with the maximum value of the imported 

imperfection set to a value of Lb/1000, where Lb is the length between braced points. The 

imperfection value was deemed representative of typical fabrication tolerances on out-of-

straightness. 

 

3.4 Model validation 

The developed FE models of singly-symmetric beams were validated by comparing the results 

with the theoretical solutions. According to Eq. 2, the theoretical elastic LTB capacity (Mcr,th) of 

singly-symmetric I-beams under the uniform moment loading can be determined. The theoretical 

solution assumes that the web has a rigid cross-section without distortion under the bending 

moment. To ensure a valid comparison between the FE results and the theoretical solution, fully-

stiffened beams with closely spaced braces (a/h = 0.25) to prevent web distortion were modeled 

and compared against the theoretical method. The eigenvalue buckling analyses were conducted 

for multiple beams with various bottom flange sizes, web thicknesses, and unbraced length-to-

depth ratio. Correspondingly, the critical LTB moments obtained by the FE modeling were 

designated as Mcr,st,FE, where the subscript “st” represents “full stiffened” sections. The results are 

shown as the normalized LTB resistance obtained from the FE modeling by the theoretical 

solution, Mcr,st,FE/Mcr,th. Fig. 2 summarizes the normalized results for different values of degree of 

mono-symmetry.  

 

The normalized numerical LTB capacities have an average value of 0.99 and a standard deviation 

of 0.017. The maximum difference between the FE result and the theoretical solution was 

approximately 7%. Overall, the results from FE analyses generally agreed well with the theoretical 

solutions and the differences were acceptable based on previous analyses (Liang et al. 2022; 

Reichenbach et al. 2020). Therefore, the proposed FE models for singly-symmetric beams were 

validated and employed for following parametric studies.  
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Figure 2: Model validation on stiffened girder subjected to uniform moment. 

 

4. Numerical parametric Studies 

The effects of shear on the elastic LTB resistance were investigated on the unstiffened beams using 

the validated FE modeling strategy. Three moment loading conditions were considered: 1) 

uniform-moment loading, leading to zero shear along the unbraced length; 2) linearly-distributed 

moment, leading to constant shear, with 𝛽 indicating the ratio between two end moments (𝛽 = 1, 

0.5, 0, -0.5, -1); and 3) moment gradient, leading to linearly-distributed shear.  

 

The LTB resistance of the unstiffened beams obtained by conducting eigenvalue buckling 

analyses, Mcr,FE, were compared with that of the fully-stiffened beams, Mcr,st,FE. The results are 

shown as the normalized buckling moment of the unstiffened beams by the buckling moment of 

the fully stiffened beams, which is denoted as Mcr,FE/Mcr,st,FE to indicate the deduction of the LTB 

resistance due to the shear effects. 

 

4.1 Effects of effective web slenderness ratio (hc/tw) 

Fig. 3 presents the effects of effective web slenderness ratio (hc/tw) on the normalized LTB capacity 

of unstiffened beams under different loading conditions.  
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Figure 3: Effects of web slenderness ratio under: (a) zero shear; (b) constant shear; (c) shear gradient. 

 

In the case of a zero shear, as depicted in Fig. 3(a), the reduction in the elastic LTB resistance was 

more significant as the web slenderness ratio increased, which is likely due to larger web distortion 

effects for slender webs. This trend was generally true for conditions of constant shear and shear 

gradient, as shown in Figs. 3(b) and (c). In addition, a higher magnitude of the shear along the 

unbraced length resulted in a larger reduction in the LTB moment. In the case of zero shear, the 

moment reduction was approximately 15% for the most slender web. In the case of constant shear, 

the maximum reduction of the LTB capacity was approximately 35%. In the case of shear gradient, 

the reduction of the LTB capacity was as large as 45%.  

 

4.2 Effects of unbraced length-to-depth ratio (Lb/h) 

Fig. 4 presents the effects of unbraced length-to-depth ratio (Lb/h) on the normalized LTB capacity 

of unstiffened beams under different loading conditions. A general observation was that the LTB 

moment of unstiffened beams was less affected by the effects of shear for a smaller value of 

unbraced length-to-depth ratio. Particularly for cases of constant shear and shear gradient, a 

decrease in the unbraced length-to-depth ratio efficiently decreased the reduction of LTB moment 

due to shear. Similar to the observations in Fig. 3, for a certain value of unbraced length-to-depth 

ratio, the reduction in the LTB moment was increased as the magnitude of the shear increased.  
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Figure 4: Effects of unbraced length-to-depth ratio under: (a) zero shear; (b) constant shear; (c) shear gradient. 

 

4.3 Effects of ratio of top to bottom flange area (Atf/Abf) 

Fig. 5 presents the effects of ratio of the top flange area to the bottom flange area (Atf/Abf) on the 

normalized LTB capacity of unstiffened beams under different loading conditions.  

 

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
cr

,F
E
/M

cr
,s

t,
F

E

Atf/Abf

MM

Lb/h=6.7-20;     

 =0.1-0.5;

bbf/tbf= 6-18;  

h/tw=30-250   

152.4mm×12.7mm

bbf, tbf varies

914mm
tw varies

 

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

152.4mm×12.7mm

bbf, tbf varies

914mm
tw varies

M
cr

,F
E
/M

cr
,s

t,
F

E

Atf/Abf

M M

Lb/h=6.7-20;     

 =0.1-0.5;

bbf/tbf= 6-18;  

h/tw=30-250   

 
(a) (b) 

0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
cr

,F
E
/M

cr
,s

t,
F

E

Atf/Abf

152.4mm×12.7mm

bbf, tbf varies

914mm
tw variesLb/h=6.7-20;     

 =0.1-0.5;

bbf/tbf= 6-18;  

h/tw=30-250   

 
(c) 

Figure 5: Effects of ratio of top to bottom flange area under: (a) zero shear; (b) constant shear; (c) shear gradient. 
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A value of 1.0 for Atf/Abf corresponded to doubly-symmetric beams, and a value smaller than 1.0 

corresponded to singly-symmetric beams considered in this study with a smaller top flange 

compared to bottom flange. It was found that the effect of shear on the LTB behavior was not 

significantly affected by the ratio of top to bottom flange area. 

 

4.4 Effects of post-buckling strength 

Previous studies indicated that the shear strength can significantly increase during the post-

buckling period (Daley et al. 2017). Therefore, large-displacement analyses were conducted to 

evaluate the effects of post-buckling strength by considering nonlinear geometry and 

imperfections. The selected beams had a constant unbraced length-to-depth ratio of 6.7, a constant 

web slenderness ratio of 125, whereas the degree of mono-symmetry varied in the range of 0.1 and 

0.5 by changing the dimensions of the bottom flange. The analyses were conducted under linearly-

distributed moment with three values of 𝛽: 1, 0 and -1, for which the magnitude of uniform shear 

increased correspondingly. For beams with imperfections in the geometry, the critical LTB 

moment was taken as the moment when the section at the mid-span of the beam twisted a 0.1 rad 

(Liang et al. 2022).  

 

Fig. 6 plots the effects of nonlinear geometry with variations in the degree of mono-geometry. The 

moment reductions from the eigenvalue analysis and large-displacement analysis were noted with 

the solid and open symbols, respectively, in Fig. 6. It was found that with the post-buckling 

strength, the LTB moment reduction due to shear was slightly lower for unstiffened beams. The 

benefits of the post-buckling strength were more obvious when the beams were subjected to a 

relatively larger uniform shear along the unbraced length. In addition, a larger reduction in the 

LTB moment was observed for beams with lower degree of mono-symmetry. 
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Figure 6: Effects of nonlinear geometry with variations in degree of mono-symmetry. 

 

5. Evaluation of design equations  

The accuracy of previously proposed equations for doubly-symmetric I-beams (Eqs. 6-8) by 

incorporating a moment reduction factor to account for the effects of shear was evaluated with the 

results from eigenvalue analyses and large-displacement analyses for singly-symmetric I-beams. 

The moment gradient factor, Cmv, also depends on the relative area of web and flange. In the present 

study, for the evaluation of those previously proposed design equations, the flange area, Af, as in 

the Eq. 8, was taken as the smaller area of the top and bottom flanges for singly-symmetric I-

beams. The critical LTB moment of the singly-symmetric unstiffened I-beams investigated in this 

study was predicted using those equations, labeled as Mcr,predict, and compared against the buckling 
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moment obtained from the FE analysis, Mcr,FE. The results are normalized by dividing the predicted 

moment by the FE moment, Mcr,predict/Mcr,FE. In this paper, the “design equations” refers to the 

previously proposed equations by Liang et al. (2022), as shown in Eqs. 6-8.  

 

5.1 Unstiffened web under uniform moment (zero shear) 

Under the case of uniform moment loading causing zero shear along the unbraced length, the 

moment gradient factor, Cmv, is taken the value of 1. Fig. 7 summarizes the results for unstiffened 

beams with various geometries. All the normalized predicted LTB moments were larger than 1, 

with a maximum value of approximately 1.2, indicating that the proposed equations predicted a 

larger LTB moment than the FE model. As shown in Fig. 7(b), the normalized predicted buckling 

moment increased as the effective web slenderness ratio increased, and the predicted capacity was 

20% larger than that of the capacity by FE analyses for the slenderest webs. The over-estimation 

of the LTB capacity was likely due to the LDB effects associated with singly-symmetric I-beams 

under the case of zero shear which were not considered in the design equations. 
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Figure 7: Evaluation of the equations in the case of zero shear with variations in: (a) degree of mono-symmetry; (b) 

effective web slenderness ratio. 
 

5.2 Unstiffened web under constant shear 

The feasibility of the design equations was evaluated for unstiffened webs under linearly 

distributed moment loading causing constant shear along the unbraced length, as shown in Fig. 8. 

The normalized predicted buckling moment by the equations was in the range of 0.817 to 1.144. 

The difference between the design results and the FE results increased as the effective web 

slenderness ratio increased. 
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Figure 8: Evaluation of the equations in the case of uniform shear with variations in: (a) degree of mono-symmetry; 

(b) effective web slenderness ratio. 

 

5.3 Unstiffened web under shear gradient 

Fig. 9 compares the predicted LTB capacity by the design equations and the eigenvalues obtained 

from FE analyses in the case of shear gradient. The design equations can provide a relatively 

accurate prediction of the LTB resistance for singly-symmetric I-beams with compact webs, which 

is slightly on the conservative side. However, for non-compact and slender webs, which are 

subjected to more effects of LDB and shear, the design equations can over-estimate or under-

estimate the LTB capacity for by approximately 20% compared to the FE results. 
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Figure 9: Evaluation of the equations in the case of shear gradient with variations in: (a) degree of mono-symmetry; 

(b) effective web slenderness ratio. 

 

5.4 Partially-stiffened web 

The feasibility of the design equations was evaluated for partially-stiffened webs, which had a 

stiffener spacing-to-depth ratio (a/h) in the range of 0.25 to 3.4. Three moment diagrams were 

considered: 1) unbraced segments of fix-fix beam with UDL; 2) reverse curvature bending; and 3) 

half of the unbraced segments of fix-fix beam with UDL. Almost all of the predictions of the LTB 

capacity given by the design equations were on the conservative side compared to the FE results, 

with a maximum difference of approximately 20%. 
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Figure 10: Evaluation of the equations for partially-stiffened webs with variations in: (a) degree of mono-symmetry; 

(b) stiffened level. 

6. Conclusions 

In this study, numerical parametric studies were performed to investigate the effects of shear on 

the elastic LTB resistance of singly-symmetric beams through eigenvalue analysis and large-

displacement analysis. The effects of the web slenderness ratio, the unbraced length-to-depth ratio, 

the ratio of top to bottom flange area, and nonlinear geometry on the reduction of the LTB 

resistance due to shear were evaluated. Previously proposed design equations for doubly-

symmetric I-beams were applied to predict the reduction in the LTB for singly-symmetric I-beams 

and their feasibility was evaluated. The main conclusions and findings are summarized as follows: 

(1) The effective web slenderness ratio plays a significant role in the reduction of the LTB 

resistance due to shear for singly-symmetric I-beams. The decrease of the unbraced length-to- 

depth ratio also effectively reduces the negative effects of shear on the LTB capacity. 

However, the ratio of top to bottom flange area of singly-symmetric sections is not a critical 

factor for the shear effects on the LTB response.  

(2) The design equations are unconservative in predicting the LTB capacity for singly-symmetric 

I-beams in the case of zero shear due to the neglection of the LDB effects in the equations. 

The over-estimation of the LTB is more obvious for webs with higher slenderness ratio for 

20%, which are more affected by the LDB effects. 

(3) A maximum of 20% difference was observed between the LTB by design equation and the 

LTB by FE analyses in the existence of shear along the unbraced length. However, the 

improvement of the design equations to determine the LTB resistance of singly-symmetric I-

beams is needed to have a better fit to the FE results by accounting for the combined effects 

of LDB and shear. 
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