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Abstract

Lateral torsional buckling is a limit state for steel bridges that is critical during construction. The 
buckling resistance is improved by providing intermediate bracing, which commonly consist of 
cross-frames comprised of single-angle members. In bridges with support skew, the installation 
and  long-term  maintenance  of  cross-frames  can  be  complicated  due  to  the  skewed  geometry. 
Lean-on bracing  concepts, which selectively remove cross-frames in place of utilizing only top 
and bottom struts are becoming an attractive design option. Lean-on bracing significantly improves 
the ease of installation during erection and also minimizes long-term fatigue issues. Past studies 
have provided guidance  on the distribution of cross-frames as well as the stiffness and strength 
behavior  of  the  cross-frames  in  lean-on  applications.  However,  additional  investigation  on 
improved guidelines can lead to further refinement on the bracing behavior.

This  paper  provides  an  overview  of  the  impact  of  the  distribution  of  cross-frames  in  lean-on 
bracing systems on the overall stiffness and strength behavior. The performance of different cross- 
frame distributions was quantified by conducting an extensive study that integrated the effects of 
bridge geometries with varied width and number of girders. This paper summarizes the findings 
of the investigation and provides design recommendations.
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1. Introduction 

There are a number of limit states the must be considered at various 

stages in the life of a bridge by designers. The critical stage for stability 

generally occurs during the early stages of erection, when not all bracing 

is present or during construction of the concrete deck when the steel 

girder alone supports the entire construction load. Stability is typically 

controlled by lateral-torsional buckling (LTB), illustrated in Fig. 

1Figure 1, which is a limit state that involves lateral translation of the 

compression flange and twist of the girder cross-section. LTB is not 

generally a problem in the completed bridge since the girders are 

laterally and torsionally restrained by the concrete bridge deck. The 

elastic lateral torsional buckling capacity, 𝑀𝑐𝑟, of a doubly symmetric 

girder is given by the following expression derived by Timoshenko 

(Timoshenko and Gere, 1961): 

 

 𝑀𝑐𝑟 = 𝐶𝑏
𝜋

𝐿𝑏

√𝐸𝐼𝑦𝐺𝐽 + (
𝐸𝜋

𝐿𝑏
)

2

𝐼𝑦𝐶𝑤 (1) 

 

Where 𝐸  is the elastic modulus; 𝐺  is the shear modulus; 𝐽  is the torsional constant; 𝐼𝑦  is the 

moment of inertia about the weak axis; 𝐶𝑤 is the torsional warping constant, and 𝐿𝑏 is the unbraced 

length defined by the spacing between braced points.    

 

There are two ways of providing effective stability bracing of beams: lateral bracing that controls 

the lateral movement of the compression flange or torsional bracing that controls twist of the 

section. The most common form of bracing in steel bridges are cross-frames such as those depicted 

in Fig. 2a that control the twist of the girders. Bridge systems that employ cross-frames between 

each adjacent girder as depicted in Fig. 2a, are referred to as conventionally braced.  

 

Historically, cross-frames were restricted to a maximum spacing of 25 ft. (7.62 m.). However, 

primarily due to fatigue concerns around brace locations, the 1st edition of the AASHTO LRFD 

removed the spacing limit in-place of a requirement for the spacing dictated by a rational analysis.  

Practical design considerations for girder stability during construction often lead to a required 

spacing between cross frame lines of 25 ft. (7.62 m.) to 40 ft (12.19 m.).   

 

Due to high fabrication and installation costs, cross-frames and diaphragms often represent the 

most expensive component on the bridge per unit weight. During erection, installation of these 

cross-frames can cause several complications due to fitting. Furthermore, support skew can 

exacerbate these issues due to difficulty installing cross-frames near the supports. Larger live-load 

induced forces are also common in bridges with high support skew, compared to bridges with 

normal supports, elevating concerns regarding fatigue performance of cross-frame members. In 

addition, the cross-frames are often comprised of single angle members, which are categorized as 

E′ details – the worst performance in AASHTO. To minimize live load induced forces and facilitate 

girder erection, lean-on bracing concepts strategically remove redundant diagonal bracing 

members as shown in Fig. 2b.  

 

Figure 1: Cross-section of I-

girder undergoing lateral 

torsional buckling 
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Figure 2: Example of typical bracing systems with full cross-frames (a) and using lean-on bracing (b) 

 

Pursing a method to reduce live-load induced forces, lean-on bracing concepts were first developed 

for steel bridges in TxDOT Study 0-1772 (Helwig and Wang 2003). Following the 0-1772 study, 

several skew and nonskew bridges were designed and constructed to leverage the unique properties 

of lean-on bracing. As TxDOT Study 0-1772 was not focused on cross-frame layout, bridge 

designers lacked adequate guidance on how to determine an optimum layout of cross-frames 

throughout the bridge system. In contrast, this paper focuses on studying the unique stiffness and 

strength behavior of cross-frame lines in order to propose guidance on cross-frame layout.  

 

Before beginning the investigation, an ABAQUS (2023) modeling procedure was developed using 

the data from two instrumented lean-on bridge systems. These systems were monitored while 

undergoing live load testing utilizing four loaded dump trucks. The monitoring supplied cross-

frame forces and deflection measurements along the bridge systems for model validation. 

ABAQUS models of the bridge systems were benchmarked against the gathered data and the 

modeling procedure was adjusted until the bridge models produced results comparable to the in-

situ conditions. The modeling procedure was further refined using data from the bridge 

instrumented in TxDOT Study 0-1772 (Helwig and Wang 2003). 

 

The next section of this paper will provide further background information on stability and lean-

on bracing. This information includes the necessary stiffness and strength requirements for bridge 

systems. The third section of the paper outlines the finite element modeling procedure, including 

key modeling information on the boundary conditions, loading, and girder geometry. The final 

section provides an outline of the parametric study conducted and the analysis results of that study. 

These results were gathered from a combination of linear eigenvalue buckling and geometric 

imperfection analyses. The paper concludes with a summary of the results and the future work to 

be conducted. 
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2. Background 

Stability bracing has seen several investigations over the past 100 years, with the most significant 

contributions being made by Winter (1960) and Yura (2001). The dual criteria of stiffness and 

strength requirements was first demonstrated by Winter’s (1960) work on stability bracing 

systems. Additionally, Winter highlighted the impact of initial imperfections on the brace strength 

requirements. Yura (1992) built off the foundation laid by Winter by developing comprehensive 

formulations for column and beam systems. Yura summarized his research for beam bracing 

systems in his 2001 paper. 

 

Fundamentally, effective stability bracing requires sufficient strength and stiffness. The American 

Institute of Steel Construction (AISC - 2016) has outlined the modern provisions in its 

specifications. Recent work documented in Reichenbach et al. (2021) resulted in stability bracing 

provisions that are included in the 10th Ed. of the AASHTO Bridge Design Specifications (BDS).  

Many stability bracing systems follow the behavior of springs in series as outlined in Yura et al. 

(1992), the equation of which is presented in Eq. 2. The torsional brace stiffness of the system, 𝛽𝑇, 

of the system is a function of three components: the in-plane girder stiffness, 𝛽𝑔, the brace stiffness, 
𝛽𝑏𝑟, and the cross-section stiffness, 𝛽𝑠𝑒𝑐.  

 

 
1

𝛽𝑇
=

1

𝛽𝑏𝑟
+

1

𝛽𝑠𝑒𝑐
+

1

𝛽𝑔
 (2) 

 

There are a number of different cross-frame geometries that might be specified by a designer, 

including X-frames, K-frames, and Z-frames.  Examples of an X-frame or a K-frame are shown in 

Fig. 3. Some states have details consisting of a single diagonal cross-frame, which are referred to 

as Z-frames. Because single angle members often have a relatively low buckling strength, in design 

the compression diagonal can be conservatively neglected, which also results in a Z-frame.   

 

The brace stiffness for a Z-frame 

system is calculated using Eq. 3 

where s  is the spacing between 

girders, 𝐴𝑑  is the area of the 

diagonal bracing members, 𝐴ℎ is the 

area of the horizontal members, and 

𝐿𝑑  is the length of the diagonal 

bracing members.  

 𝛽𝑏𝑟 =
𝐸𝑠2ℎ𝑏

2

2𝐿𝑑
3

𝐴𝑑
+

𝑠3

𝐴ℎ

 (3) 

 

The research paper herein employs adjustments to 𝛽𝑔 and 𝛽𝑏𝑟 outlined in Fish et al. (2024). Using 

the new formulation of the in-plane girder stiffness expression shown in Eq. 4 and the multi-cross-

frame adjustment factor, 𝐶𝑛𝑐 for Z-frames displayed in Eq. 5, the system stiffness properties can 

be more accurately captured.  

 

 𝛽𝑔,2024 = 𝐶𝑏𝑠
2 𝜋4𝐸𝐼𝑥𝑠2

2𝑛𝑔(𝐾𝐿)3(𝑛+1)
𝛼𝑥 (4) 

Figure 3: Examples of lateral torsional braces: (a) X-frame and (b) K-

frame 
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 𝐶𝑛𝑐,𝑧 = 1 +
𝑛𝑐−1

𝑛𝑐+1.75
 (5) 

 

Where 𝐶𝑏𝑠  is a moment gradient factor; 𝑛𝑔  is the number of girders; 𝐾 is the effective length 

factor; 𝑛 is the number of cross-frame lines; 𝛼𝑥 is a warping stiffness factor, and 𝑛𝑐 is the number 

of cross-frames in a cross-frame line. 𝐶𝑛𝑐 is multiplied directly to the brace stiffness expression to 

account for multiple in-line cross-frames in a conventional system. The system torsional brace 

stiffness is smaller than the smallest of the three components. AISC (2017) provides the following 

expression for the required system brace stiffness, 𝛽𝑇,𝑟𝑒𝑞:  

 

 𝛽𝑇,𝑟𝑒𝑞 =
2.4𝐿𝑀𝑢

2

𝜑𝑛𝐸𝐼𝑒𝑓𝑓𝐶𝑏
2 (6) 

 

Where 𝐿 is the span length; 𝑀𝑢 is the ultimate design moment; 𝜑 is the LRFD resistance factor 

equal to 0.8; 𝐸 is the Young’s Modulus; 𝑛 is the number of intermediate braces; 𝐶𝑏 is the moment 

gradient factor; 𝐼𝑒𝑓𝑓 is the effective moment of inertia about the weak axis given by 𝐼𝑒𝑓𝑓 = 𝐼𝑦𝑐 +

𝑡/𝑐 ∙ 𝐼𝑦𝑡 . 𝐼𝑦𝑡   is the lateral moment of inertia of the tension flange, 𝑡  is the distance from the 

centroid of the tension flange to the neutral bending axis, and 𝑐 is the distance from the centroid 

of the compression flange to the neutral bending axis. 

 

The expression given in Eq. 6 represents twice the ideal stiffness. As shown initially by Winter 

(1960), providing twice the ideal stiffness is assumed to result in a twist at the brace location that 

is approximately equal to the initial imperfection, 𝜃𝑜, when the girder is subjected to the maximum 

design moment, 𝑀𝑢 . The stability brace moment, based upon this assumption, is given by the 

following expression:  

 

 𝑀𝑏𝑟 = 𝛽𝑇,𝑟𝑒𝑞𝜃𝑜 =
2.4𝐿𝑀𝑢

2

𝜑𝑛𝐸𝐼𝑒𝑓𝑓𝐶𝑏
2

𝐿𝑏

500ℎ𝑜
 (7) 

 

Where  ℎ𝑜  is the distance between flange centroids. The other terms in Eq. 7 are as defined 

previously.  

 

Wang and Helwig (2005) demonstrated the most critical imperfection shape is a lateral translation 

of the compression flange at the brace location (assumed magnitude of 𝐿𝑏 /500) with straight 

tension flange at the location of maximum moment. Fig. 4 shows the exaggerated imperfection 

shape that was used in this paper’s study. A slight asymmetry was applied to the imperfection 

shape due to recommendations by Prado and White (2015), and Liu and Helwig (2020) in their 

studies related to torsional brace strength requirements. 
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Figure 4: Exaggerated shape of critical imperfection located in maximum moment region 

 

Effective stability bracing system aims for the girder to buckle between the brace points. However, 

narrow girder systems are susceptible to another buckling mode: the system buckling mode. The 

system buckling mode was first discussed in Yura et al. (2008) and later incorporated into the 

AASHTO BDS in 2015. The system mode of buckling is insensitive to the spacing between cross-

frames as the girders tend to buckle in a half-sine curve. Additionally, narrow girder systems are 

often susceptible to significant second order amplification as shown by Sanchez and White (2012). 

Initially this susceptibility led AASHTO to limit the maximum moment during construction to 

50% of the elastic critical buckling load. However, work conducted by Han and Helwig (2020) 

demonstrated that system buckling of girders was related to the initial imperfection. This research 

resulted in raising the AASHTO limit from 50% to 70% of the critical system buckling capacity.  

Ultimately, the imperfections utilized in Han and Helwig provided guidance on the current study. 

 

3. Finite Element Model and Analysis Types 

The general-purpose finite-element analysis program ABAQUS 

(2023) was used in the computational studies conducted on 

representative bridge geometries. For this paper, the analysis was 

focused on determining fundamental behavior of cross-frame layouts 

in respect to the previously discussed strength and stiffness 

requirements. 

 

S4 linear shell elements were used to model the girders. The elements 

were sized such that the flanges of the girders were modeled with one 

element on either side of the web and that the aspect ratio was as close 

to unity as possible. Bracing members were modeled using T3D2 

linear truss elements connected at the web-flange junctures to prevent 

the effects of cross-sectional distortion. Web stiffeners, modeled 

using S4 linear shell elements, were included for completeness and 

located along the web at each brace location. 

 

The typical girder section used for the studies is displayed in Fig. 5. Although a variety of loading 

conditions have been used in the study, the results outlined in this paper focus on girders with 

Figure 5: Illustrations of the 

girder section used for study 
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uniform moment loading. The bridge models featured simply-supported girders that were free to 

warp at the supports. The pin and roller supports were placed at the bottom flange-web juncture 

and restrained vertical and lateral movement. The pin supports additionally restrained longitudinal 

movement of the girder. 

 

This modeling procedure was validated by benchmarking instrumentation data of three bridges 

constructed using lean-on concepts. Live load testing was conducted on two of the bridges, a 

nonskew and a skew bridge, using loaded dump trucks. Additionally, live load and construction 

data of the third bridge from TxDOT study 0-1772 (2003) was utilized. The validation data 

included cross-frame forces and girder displacements at measured locations along the length of 

each bridge. Models of each bridge were made in ABAQUS (2023), with adjustments being made 

to the modeling methodologies to minimize discrepancies between the experimental and model 

results. 

 

Two analysis types were used in the study: linear eigenvalue buckling analyses and nonlinear 

geometric imperfection analyses. Linear eigenvalue buckling was used to identify the ideal 

stiffness, the minimum brace stiffness required to reach buckling between brace points, of the 

bridge systems. Utilizing the ideal stiffness, geometric imperfection analyses were conducted 

using the Riks Arclength method to determine the effects of cross-frame layout on girder 

displacement and brace stresses. The imperfection was modeled by selecting nodes within a 

bounding box and translating those nodes based upon the imperfection equation shown in Eq. 8.  

 

 
𝑠𝑖𝑛([𝑥−(𝑥𝑐𝑟𝑖𝑡+𝐿𝑏)]

𝜋

𝐿
 − 

𝜋

2
)

2
∙

𝐿𝑏

500
 where 𝑥𝑐𝑟𝑖𝑡 − 𝐿𝑏 ≤ 𝑥 ≤ 𝑥𝑐𝑟𝑖𝑡 + 𝐿𝑏 (8) 

 

Where 𝑥𝑐𝑟𝑖𝑡  is the location of the critical cross-frame line and 𝐿𝑏/500 is the imperfection 

magnitude. The imperfection was altered to be slightly asymmetric to increase the severity of the 

imperfection by reusing and multiplying Eq. 8 over part of the imperfection as illustrated in Fig. 

6.  

 
Figure 6: Illustration of critical imperfection shape produced by Eq. 8. and skew modification 
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4. Layout Effect Study with Isolated 𝛃𝐛𝐫 

Quantifying the layout effects of lean-on systems requires individual elements of the system 

stiffness to be isolated. As stated in the background, the total system stiffness is a function of the 

stiffness of the brace (𝛽𝑏𝑟 ), the in-plane stiffness of the girders (𝛽𝑔 ), and the cross-sectional 

stiffness to control distortion (𝛽𝑠𝑒𝑐). Because full depth cross-frames were utilized, the cross-

sectional distortion term (𝛽𝑠𝑒𝑐), can be taken as infinite, which only leaves the brace stiffness and 

in-plane stiffness. The remaining two stiffness components can be individually isolated by 

maximizing the stiffness of the other component such that the component acts infinitely stiff: 

 

1. 𝛽𝑏𝑟 can be isolated by maximizing the bridge width (𝛽𝑔). 

2. 𝛽𝑔 can be isolated by maximizing the brace area (𝛽𝑏𝑟). 

 

A stiffness component acts infinitely stiff if the resultant component is above a certain multiplier 

of the ideal stiffness (𝛽𝑇,𝑖𝑑𝑒𝑎𝑙), the minimum system stiffness required to get buckling between 

the brace points. A modeling configuration was chosen that enabled 𝛽𝑔 to act as infinitely stiff 

such that the brace stiffness behavior could be directly related to 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙 (other term drops out of 

the equation).  

 

Girder systems with varying geometries were tested to ensure the 𝛽𝑔 acted as an infinitely stiff 

component. Table 1 highlights the results of the sensitivity study conducted for these girder 

systems. Based upon the sensitivity analysis, all the systems had sufficient 𝛽𝑔 such that the 𝛽𝑏𝑟 

stayed constant for a given unbraced length. This indicates 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙 was insensitive to the changes 

in 𝛽𝑔 in these system configurations. For the study, the girder to girder spacing selected was 80′ 

and the unbraced length was set to 25′. 
 

Table 1: Bridge parameters and calculated 𝛽𝑔 compared to 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙  

Girder 

Spacing 

Total width of 

girder system 
Span 

Length 

# of Cross 

Frame Lines 

Unbraced 

Length 
𝛽𝑔,𝑒𝑞,2024 𝛽𝑏𝑟,𝑒𝑓𝑓,𝐹𝐸𝐴 𝛽𝑔

𝛽𝑇,𝑖𝑑𝑒𝑎𝑙

 

(𝑆) (𝑊𝑔) (𝐿) (𝑛𝑐) (𝐿𝑏) (
𝑘𝑖𝑝 − 𝑖𝑛

𝑟𝑎𝑑
) (

𝑘𝑖𝑝 − 𝑖𝑛

𝑟𝑎𝑑
) 

80′ 320′ 160′ 3 40′ 12,702,000 64,000 200 

40′ 160′ 160′ 3 40′ 3,175,000 64,000 50 

80′ 320′ 150′ 5 25′ 10,278,000 229,000 45 

40′ 160′ 150′ 5 25′ 2,569,000 228,000 11 

As stated previously, when 𝛽𝑔 is suitably large to be treated as infinitely stiff, 𝛽𝑏𝑟 can be directly 

related to 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙. This is due to the expression for springs in series, Eq. 2, which dictates that the 

𝛽𝑇 is equal to 𝛽𝑏𝑟 when the other terms drop out. A summary of these developments is given in 

Fig. 7.   
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Figure 7: Idealized system isolating the effects of a single stiffness component such that βT,Ideal can be obtained 

 

By relating 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙  directly with 𝛽𝑏𝑟 , the independence, or lack thereof, of cross-frame line 

behavior could be determined. If cross-frame lines acted independently, layouts would exhibit no 

effect on the brace stiffness requirements of the girders. Thus, the 𝛽𝑏𝑟 requirement would solely 

be based on the girder geometry and the applied moment. Based on conventional understanding, 

the provided 𝛽𝑏𝑟 is dependent on the position, member sizes, and number of cross-frames in a 

cross-frame line. Henceforth, cross-frames lines with the same number of cross-frames, member 

sizes, and cross-frame positioning are referred to as equivalent stiffness cross-frame lines. 

 

Based on recent research on the in-plane girder stiffness (Fish et al. 2024), a factor was developed 

to account for an increase in 𝛽𝑏𝑟 due to multiple in-line cross-frames, 𝐶𝑛𝑐. Due to the accuracy of 

the new factor and corresponding expression, the brace stiffness of conventional systems can be 

used to determine the 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙 of a stiffness-isolated girder system. Using finite element analyses, 

the 𝛽𝑏𝑟 can be related directly to the area property of the truss elements. 

 

The first step in determining the impact of lean-on struts on bracing behavior is to determine the 

minimum brace area corresponding to buckling between the brace points in the stiffness isolated 

conventional system. The minimum brace area corresponds to 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙 and can be used as a point 

of reference. To buckle between the brace points, a girder must have all brace points (cross-frame 

lines) achieve sufficient stiffness. Once 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙 is determined, the system can be reanalyzed with 

some of the conventional cross-frame lines replaced by equivalent stiffness cross-frame lines with 

lean-on struts. As the girder cross-section and moment are unchanged, the ideal stiffness and thus 

brace stiffness requirement are the same. The minimum brace area of these new cross-frame lines 

can then be determined, equated to 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙, and used to verify the design equations and behavior 

of lean-on systems. 

 

Various layouts were tested utilizing equivalent stiffness cross-frame lines after collecting the 

corresponding 𝛽𝑇,𝑖𝑑𝑒𝑎𝑙 from a conventional bridge system. The layouts shown in Fig. 8 correspond 

to the layouts tested for a 5-girder system. The aim of these layouts was to determine the effects 

of cross-frame number and position on the effective brace stiffness of a cross-frame line with lean-

on. 

 



 10 

 
Figure 8: Girder layouts used in the layout effect parametric study 

  

A summary of the layouts used in the study is provided in Table 2 and comprises the results of 135 

bridge systems. The systems tested can be subdivided into systems with only internal cross-frames 

(reference bridge 11 in Fig. 8) and systems with cross-frames extending from the exterior 

(reference bridges 2 to 4 in Fig. 8).  

 
Table 2: Total list of layouts per number of girders tested in layout effect parametric study 

# of Girders # of Layouts Total # of Layouts with only  

Internal Cross-frames 

# of Layouts with Cross-frames 

 Extending from the Exterior 

7 52 24 28 

6 37 14 23 

5 23 5 18 

4 16 1 15 

3 7 0 7 

 

The data in Table 3 provides typical examples of the results obtained from the eigenvalue buckling 

analyses of these isolated systems. Overall, the results demonstrate that different permutations of 

the orientation of the same cross-frame line altered the minimum required brace area needed to 

obtain buckling between the brace points (𝛽𝑇,𝑖𝑑𝑒𝑎𝑙). In general, the orientation of the equivalent 

stiffness cross-frame lines produced up to a 30% variation in the minimum brace area. This 

indicates that the effective brace stiffness of a cross-frame line is dependent on the layout of the 

system as well as the number, size, and position of the cross-frames in that cross-frame line. 
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Table 3: Examples of differences in brace performance of equivalent cross-frame lines 

Exterior Cross-frame Layout 𝐴𝑏𝑟,𝑙𝑒𝑎𝑛

𝐴𝑏𝑟,𝑙𝑒𝑎𝑛,𝑚𝑖𝑛

 
Interior Cross-frame Layout 𝐴𝑏𝑟,𝑙𝑒𝑎𝑛

𝐴𝑏𝑟,𝑙𝑒𝑎𝑛,𝑚𝑖𝑛

 

 

1.02 

 

1.18 

 

1.20 

 

1.17 

 

1.07 

 

1.00 

 

1.20 

 

1.07 

 

1.00   

 

Using the examples in Table 3 for reference, the lean-on cross-frame lines performed best when 

the distribution of cross-frames was equal and opposite about the axes of symmetry of the bridge. 

Additionally, cross-frames in adjacent cross-frame lines in direct contact increased the efficiency 

of the braces. This led to the categorization of two layout effects which aided in the development 

of design recommendations: 

 

• Global layout effect 

• Local layout effect 

 

The global layout effect is categorized based on the global distribution of the cross-frames, as 

illustrated in Fig. 9. The distribution should be centered about the axes of symmetry of the bridge 

system, aiming for opposite sections of the bridge to have equal cross-frame distributions. Biases 

in the distribution lead to lower stiffness and a reduction in the maximum moment capacity. 

 

Figure 9: Illustration covering the source of the global layout effect 
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The local layout effect is categorized based on the interaction between adjacent cross-frame lines 

and is highlighted in Fig. 10. Cross-frames of adjacent cross-frame lines in the same bay provide 

greater stiffness than cross-frames in different bays. Failure to link corresponding cross-frame lines 

lowers the maximum moment capacity and alters displacement distributions (maximum 

displacement is no longer about a critical geometric imperfection). This layout effect can cause 

amplified differential displacements and brace stresses in systems with geometric imperfections. 

 
Figure 10: Illustration covering the source of the local layout effect 

 

The layout effects can be further highlighted by examining the displacements and member stresses 

of bridge systems with poor local and global layouts at the ideal stiffness. Local layout effects are 

demonstrated with Bridge 8 and global layout effects with Bridge 19 in Fig. 11. Both reduce the 

maximum moment capacity (maximum load proportionality factor, LPF), but local effects 

specifically can cause a drastic increase in the member stresses and changes in the final displaced 

shape. 

 
Figure 11: Maximum layout brace stress envelope for multiple layouts 
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In addition to the layout effects, adjacent leaning girders also had a substantial effect on the 

performance of layouts. This is best highlighted by the systems with cross-frames extending from 

the exterior. The impact of not only the global cross-frame distribution, but of the number of 

adjacent leaning girders on the total diagonal brace volume requirement is shown in Fig. 12. As 

the plot demonstrates, a biased distribution with the most adjacent leaning girders possible will 

have a brace volume requirement nearly 4 times greater than that of a conventional system. 

 

Figure 12: Global layout effect and number of adjacent leaning girders on bracing material requirements 

 

Thus, minimizing the number of adjacent leaning girders by using cross-frame lines, such as the 

ones illustrated in Fig. 13, is key to improving cross-frame line performance. The cross-frame lines 

in Fig. 13 reached the ideal stiffness within 20% of the material used in the conventional cross-

frame line. 
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Figure 13: Effective lean-on cross-frame line for reducing brace area requirements 

 

The study emphasizes the need to link corresponding cross-frame lines, distribute cross-frames 

about the axes of symmetry, and minimize the number of adjacent leaning girders. The identified 

layout effects will need to be considered when designing layouts to prevent reductions in moment 

capacity, brace efficiency, and susceptibility to critical geometric imperfections.  

5. Conclusions and Future Work 

The research paper provides an overview of the effects of lean-on layouts on brace stiffness and 

considered a wide array of lean-on layouts with an isolated brace stiffness to determine the direct 

effects of individual layouts on brace stiffness. Overall, the results highlight two unique behaviors 

related to the layout: global and local layout effects. The global layout effect was based upon the 

distribution of the cross-frames throughout the system whereas the local layout effect was 

dependent on the linkage of adjacent cross-frame lines. Both effects had implications such as 

reducing system capacity and causing susceptibility to imperfections. Additionally, adjacent 

leaning girders were shown to cause reductions in brace efficiency. 

 

Future work will involve better quantifying the effects of leaning girders on layout efficiency and 

the effects of layout on the in-plane girder stiffness. In addition, layout effects on skew systems 

will be explored. 
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