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Abstract 

This paper reports the available results of an ongoing investigation on the use of Generalized Beam Theory 

(GBT) to assess the buckling behavior of cold-formed steel built-up members connected by discrete 

fasteners. After an overview of the main concepts and procedures involved in performing GBT buckling 

analyses, the paper presents the formulation and implementation of a GBT-based beam finite element 

accounting for the presence of discrete fasteners by means of constraint equations (an approach that 

constitutes a first step towards more realistic fastener simulations)  particular attention is devoted to the 

determination of the stiffness and geometric matrices. In order to illustrate the application and evidence the 

potential and advantages of the proposed approach, namely concerning its ability to provide in-depth 

information on the mechanics of instability in built-up members, several illustrative examples are presented 

and discussed in detail  they deal with columns built-up from two or three lipped channel profiles. For 

the sake of validation, most of the GBT-based results obtained are compared with values yielded by 

rigorous (“exact”) ANSYS shell finite element analyses  a virtually perfect match is invariably found. 
 
 
1. Introduction 

The extensive use of cold-formed steel (CFS) members in the construction industry stems mostly 

from their high structural efficiency (large strength-to-weight ratio), remarkable fabrication versatility 

and very low production and erection costs. In recent years, the demand for members (e.g., columns or 

beams) with a higher load-carrying capacity led to an increasing usage of built-up members, obtained by 

connecting two or more CFS profiles by means of discrete fasteners (e.g., Yu et al. 2019) – Figure 1 shows 

a sheathed wall stud system with single and built-up members. 
 
Since CFS built-up members exhibit very slender cross-sections and considerable lengths, features making 

them highly prone to instability phenomena, their structural efficiency can only be adequately assessed after 

acquiring in-depth information about their buckling behavior, namely the mechanics involved in local, 

distortional and global buckling (e.g., Stone & LaBoube 2005 and Rasmussen et al. 2020). In addition, the 

last few years witnessed a fair amount of research work devoted to the development of efficient design rules 

for CFS built-up members with screw-connected cross-sections. The most relevant fruits of this research 
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Figure 1: Sheathed wall stud system with single and built-up CFS members. 

 
activity consist of design procedures based on the Direct Strength Method (DSM), nowadays widely 

accepted as the most efficient approach to design CFS members (e.g., columns or beams) – the prediction 

of the member load-carrying capacity is based solely on its elastic buckling and yield stresses. The design 

procedures reported by Fratamico et al. (2018a,b), Georgieva et al. (2012), Vy et al. (2021), Selvaraj & 

Madhavan (2022) and Li & Young (2023) deserve to be mentioned. 
 
Since the DSM-based design of a CFS built-up member requires the knowledge of its local, distortional 

and/or global buckling stresses, it is essential to equip practitioners with easily accessible, computationally 

efficient and user-friendly numerical tools to calculate them accurately. Therefore, the development and 

wide dissemination of such numerical tools is mandatory before the codification of design specifications. 

This is why several researchers have recently reported computer programs, based on the Finite Strip 

Method (FSM), to perform the buckling analysis of CFS built-up members. Among them, it is worth 

mentioning (i) Fratamico & Schafer (2014), who used nodal multi-point constraints to tie translational 

degrees-of-freedom belonging to adjacent plate strips (continuously along the member length) and (ii) 

Li & Young (2022), who considered “solid strips” at the fastener locations (with widths equal to their 

diameters)  it should be noted that these two approaches assume longitudinally continuous fasteners. In 

order to overcome the above limitation, Abassi et al. (2018) and Mahar & Jayachandran (2020) employed 

the Compound Finite Strip Method (Puckett & Gutkowski 1986) and incorporated the stiffness properties 

of the discrete fasteners (obtained from standard beam theory) into the finite strip stiffness matrices. 

Very recently, Khezri & Rasmussen (2023) improved the formulation of Abassi et al. (2018), by including 

of a methodology to decompose the built-up member buckling modes into linear combinations of 

structurally meaningful “deformation modes”, thus enabling a better grasp of their mechanical natures. 
 
One possible alternative to the above approaches is the use of a buckling formulation based on Generalized 

Beam Theory (GBT), an approach to the analysis of thon-walled members and structural systems that has 

been significantly enhanced in the last few years (e.g., Camotim et al. 2022 and Gonçalves et al. 2023). 

However, an important gap needs to be bridged before a meaningful GBT-based approach can be employed 

to analyze thin-walled members with built-up cross-sections: it is indispensable to be able to handle the 

displacement and rotation compatibility at the fastener locations, corresponding to cross-section mid-

line points (longitudinally) spaced along the built-up member length, while retaining the GBT unique 

“modal language”. 
 

 single mem er 

 uilt up mem er 

 oard sheathing 
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The objective of this work is to present and discuss the available results of an ongoing investigation on the 

development and application of GBT to analyze the buckling behavior of CFS built-up members with 

longitudinally discrete fasteners. Initially, the formulation of a beam finite element is described, with 

particular emphasis on the procedures involved in determining the built-up member linear and geometric 

stiffness matrices. The finite element accounts for the presence of the discrete fasteners by means of 

constraint equations involving the displacements and rotations of the linked points belonging to each 

individual profile  this approach constitutes a first step towards more realistic fastener simulations. Then, 

in order to illustrate the application and potential of the proposed GBT-based approach, numerical results 

concerning the global, distortional and local buckling behavior of built-up columns, formed by two or three 

lipped channel profiles connected by discrete fasteners with several longitudinal spacing values, are 

presented and discussed. Due to the GBT unique modal nature, it is possible to unveil mechanical aspects 

involved in the various built-up column instability phenomena dealt with. For validation purposes, most of 

the GBT results obtained are compared with values yielded by accurate (“exact”) ANSYS shell finite 

element analyses that also simulate the discrete fastener influence solely by means of constraint equation. 
 
 
2. GBT Formulation for the Buckling Analysis of Built-Up Members 

Since all available GBT formulations and applications to cold-formed steel structures involve exclusively 

members with single cross-sections, the development of a GBT-based formulation capable of handling 

built-up members connected by discrete fasteners must be able to ensure displacement and rotation 

compatibility at the various fastener locations along the member length, while still retaining the GBT unique 

modal language. Developing a GBT formulation that achieves this goal is the purpose of this section. 

However, and as mentioned earlier, the authors are fully aware that such a formulation constitutes only a 

first step in the path towards reaching a more realistic simulation of the fastener influence, indispensable 

to obtain a robust GBT-based formulation to perform buckling analyses of built-up members. Further 

developments, planned for the near future, must necessarily include the incorporation of several aspects 

such as the (i) fastener geometry and stiffness, (ii) gaps between the connected walls, (iii) wall localized 

flexibility (governing the crushing phenomenon in the close vicinity of the fastener locations) and (iv) 

unilateral contact between the walls  e.g., Abassi et al. (2018) and Mahar & Jayachandran (2020). 
 
Since the cross-section displacement field is expressed as a linear combination of structurally meaningful 

deformation modes, GBT analyses involve solving equilibrium equations written in a very convenient 

and clarifying modal form, leading to solutions that provide in-depth insight on the mechanics of the 

structural response under consideration. When analyzing the buckling behavior of a built-up member 

(i.e., solving the eigenvalue problem providing its buckling loads and mode shapes), it is necessary to begin 

by performing preliminary cross-section analyses (e.g., Bebiano et al 2015) of all the individual profiles 

forming the built-up member. They lead to (i) the identification of the various deformation mode sets 

and (ii) the evaluation of the associated modal mechanical properties. 
 
Figure 2 depicts an arbitrary prismatic built-up member formed by two generic CFS profiles (1 and 2) 

connected by discrete fasteners linking the (mid-surface) points (i) 𝑃𝐴
1 and   𝑃𝐴

2, and (ii) 𝑃𝐵
1 and   𝑃𝐵

2, 

belonging to the GBT discretizations of two longitudinally spaced cross-sections. The local coordinate axes 

x, s, z associated with each wall (note that coordinate s is along the cross-section mid-line) are also 

shown in Figure 2. In a GBT formulation, member wall mid-plane displacement components (u, v, w) 

of an individual profile are expressed as 
 
 𝑢(𝑥, 𝑠) = 𝑢𝑘(𝑠)𝜑𝑘,𝑥(𝑥) 𝑣(𝑥, 𝑠) = 𝑣𝑘(𝑠)𝜑𝑘(𝑥) 𝑤(𝑥, 𝑠) = 𝑤𝑘(𝑠)𝜑𝑘(𝑥) ,   (1) 
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Figure 2: Arbitrary prismatic thin-walled built-up member formed by two individual profiles (1 and 2) and connected by 

two fasteners, located at points A and B, and wall local coordinate axes (displacement components). 
 
where (i) (.),xd(.)/dx, (ii) the summation convention applies to subscript k, (iii) functions 𝑢𝑘(𝑠), 𝑣𝑘(𝑠) and 

𝑤𝑘(𝑠), yielded by the cross-section analysis, characterize the member cross-section deformation mode k 

and (iv) 𝜑𝑘(𝑥) is the respective deformation mode amplitude function, defined along the member length. 
 
In order to establish the member equilibrium equation system defining the buckling eigenvalue problem, 

one impose the adjacent equilibrium condition 
 
 𝛿U(∆𝜑𝑘) = 0 ,   (2) 
 
expressed in terms of the strain energy variation associated to the configuration change of ∆𝜑𝑘 (from the 

underformed state, located on the fundamental equilibrium path), where 𝛿 denotes a virtual variation. 

The strain energy variation of an individual profile (𝛿U) is given by the sum of a linear or material term 

(∆ is dropped for the sake of conciseness), 
 

∫(𝐶𝑖𝑘𝜑𝑘,𝑥𝑥𝛿𝜑𝑖,𝑥𝑥 + 𝐷𝑖𝑘
1 𝜑𝑘,𝑥𝛿𝜑𝑖,𝑥 + 𝐷𝑖𝑘

2 𝜑𝑘𝛿𝜑𝑖,𝑥𝑥 + 𝐷𝑘𝑖
2 𝜑𝑘,𝑥𝑥𝛿𝜑𝑖 +𝐵𝑖𝑘𝜑𝑘𝛿𝜑𝑖)𝑑𝑥

𝐿

 ,   (3) 

 
and a non-linear or geometric term, 
 

𝜆∫ 𝑊𝑗
0𝑋𝑗𝑖𝑘

𝐿

𝜑𝑘,𝑥𝛿𝜑𝑖,𝑥𝑑𝑥 ,   (4) 

 
where (i) L is the profile/member length, (ii) 𝐶𝑖𝑘, 𝐷𝑖𝑘

1 , 𝐷𝑖𝑘
2  and 𝐵𝑖𝑘 are GBT linear modal matrices, 

(iii) 𝜆 is the load parameter, (iv) 𝑊𝑗
0 is a vector whose components j are the normal stress resultants and 

(v) 𝑋𝑗𝑖𝑘 are the associated GBT geometric modal matrices – expressions providing all these matrix 

components can be found in the work of Bebiano et al (2015). 
 
The built-up member bucking analysis is performed by means of a GBT-based beam (one-dimensional) 

finite element with length Le whose degrees of freedom (dof) are the nodal values and derivatives of the 

GBT deformation mode amplitude functions concerning all the individual profiles (1 and 2, in the 

illustrative case depicted in Fig. 2)  the deformation modes included in the analysis, which are obtained 

through the cross-section analyses of the individual profiles, exhibit different natures, namely (i) global 

(cross-section in-plane rigid-body motions: axial extension, major/minor axis bending and torsion), (ii) 

distortional, (iii) local and (iv) shear (membrane type) (see Bebiano et al 2015). The modal amplitude 

functions of each individual profile (𝜑𝑘
1(𝑥) and 𝜑𝑘

2(𝑥) in this case) are approximated by means of linear 

combinations of standard Hermite cubic polynomials, i.e., 
 

𝜑𝑘(𝑥) = 𝑑𝑘.1
𝑒 𝜓1(𝜉) + 𝑑𝑘.2

𝑒 𝜓2(𝜉) + 𝑑𝑘.3
𝑒 𝜓3(𝜉) + 𝑑4.1

𝑒 𝜓4(𝜉) ,   (5) 
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where 𝑑𝑘.1
𝑒 = 𝜑𝑘,𝑥(0) , 𝑑𝑘.2

𝑒 = 𝜑𝑘(0) , 𝑑𝑘.3
𝑒 = 𝜑𝑘,𝑥(𝐿𝑒) , 𝑑𝑘.4

𝑒 = 𝜑𝑘(𝐿𝑒)  are the finite element 

generalized displacements, 𝜉 = 𝑥/𝐿𝑒 and 
 
     𝜓1 = 𝐿𝑒(𝜉

3 − 2𝜉2 + 𝜉)     𝜓2 = 2𝜉
3 − 3𝜉2 + 1     𝜓3 = 𝐿𝑒(𝜉

3 − 𝜉2)     𝜓4 = −2𝜉
3 − 3𝜉2        .   (6) 

 
Incorporating (5) and (6) into (2) and carrying out the appropriate integrations, the individual profile finite 

element linear ([𝐾]𝑒) and geometric ([𝐺]𝑒) stiffness matrices are obtained. The overall individual profile 

linear ([𝐾]) and geometric ([𝐺]) stiffness matrices are determined by assembling their finite element 

counterparts. In the case of the illustrative built-up member considered here, depicted in Figure 2 and 

formed by two individual profiles (1 and 2), the linear ([K]1+2) and geometric ([G]1+2) matrices combine 

the individual profile ones ([K]1, [G]1, [K]2, [G]2), but taking into account the constraints that need to be 

enforced to simulate the presence of the two fasteners  they ensure the displacement and rotation 

compatibility at the individual profile mid-surface points linked by the fasteners. 
 
In order to illustrate the establishment of the above constraint/compatibility conditions, consider the fastener 

(e.g., a self-tapping screw) shown in Figure 3, which link two points (𝑅𝑚 and 𝑅𝑛) located in a the mid-

lines of the cross-section of a built-up member formed by two connected individual profiles (m and n), 

respectively at coordinates 𝑠𝑅
𝑚 and 𝑠𝑅

𝑛. First of all, GBT intermediate nodes must be placed at the points 

𝑅𝑚 (on the profile m cross-section mid-line) and 𝑅𝑛 (on the profile n cross-section mid-line). Then, 

constraining all nodal translations and rotations (except the drill rotation) at the common point R requires 

enforcing the compatibility conditions involving the displacements and rotations associated with the 

individual profile GBT deformation modes included in the analysis, which read 
 

𝑢𝑘
𝑚(𝑠𝑅

𝑚)𝜑𝑘,𝑥
𝑚 (𝑥𝑅) = 𝑢𝑘

𝑛(𝑠𝑅
𝑛)𝜑𝑘,𝑥

𝑛 (𝑥𝑅) (7) 
 

𝑣𝑘
𝑚(𝑠𝑅

𝑚)𝜑𝑘
𝑚(𝑥𝑅) = 𝑣𝑘

𝑛(𝑠𝑅
𝑛)𝜑𝑘

𝑛(𝑥𝑅) (8) 
 

𝑤𝑘
𝑚(𝑠𝑅

𝑚)𝜑𝑘
𝑚(𝑥𝑅) = 𝑤𝑘

𝑛(𝑠𝑅
𝑛)𝜑𝑘

𝑛(𝑥𝑅) (9) 
 

𝑤𝑘,𝑠
𝑚 (𝑠𝑅

𝑚)𝜑𝑘
𝑚(𝑥𝑅) = 𝑤𝑘,𝑠

𝑛 (𝑠𝑅
𝑛)𝜑𝑘

𝑛(𝑥𝑅) (10) 
 

𝑤𝑘
𝑚(𝑠𝑅

𝑚)𝜑𝑘,𝑥
𝑚 (𝑥𝑅) = 𝑤𝑘

𝑛(𝑠𝑅
𝑛)𝜑𝑘,𝑥

𝑛 (𝑥𝑅) ,   (11) 
 
where a null distance between the two points is assumed (the generalization to finite distances, associated 

with gaps between the connects walls, will be addressed in the near future). After performing the above 
 

 
Figure 3: Displacement and rotation compatibility at points 𝑅𝑚 and 𝑅𝑛 of two profiles forming a built-up member. 
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procedure for all the built-up member discrete fasteners (in all connected cross-sections along the member 

length), the full set of constraint equations can be expressed, in matrix form, as 
 

{𝑑} = [Ω]{𝑑̃} .   (12) 
 
where (i) {𝑑} is the generalized mode displacement vector, (ii) [Ω] is the compatibility matrix, containing 

the deformation mode displacement and rotation values at the full set of individual profile connected points, 

and (iii) {𝑑̃} is the “constrained generalized mode displacement vector” at those same points, which takes 

into account the displacement and rotation compatibility. After knowing matrix [Ω], the displacement and 

rotation compatibility at the fastener locations is imposed on the built-up member linear and geometric 

stiffness matrices through a condensation operation. In the case of the illustrative example depicted in 

Figure 2, which concerns a built-up member formed by two individual profiles (1 and 2) connected by two 

fasteners (A and B, located in different cross-sections), this operation reads 
 

[
[𝐾̃]

1
0

0 [𝐾̃]
2] + 𝜆 [

[𝐺̃]
1

0

0 [𝐺̃]
2] = [Ω]

𝑇 [
[𝐺]1 0

0 [𝐺]2
] [Ω] + 𝜆[Ω]𝑇 [

[𝐺]1 0

0 [𝐺]2
] [Ω] ,   (13) 

 
where the compatibility matrix [Ω] containing the deformation mode displacement values at the mid-line 

coordinates 𝑠𝐴
1𝑠𝐵

1  and 𝑠𝐴
2𝑠𝐵

2 of the cross-sections at the longitudinal coordinates xA and xB (the fastener 

locations are the same at the two connected cross-sections). Since (i) the buckling eigenvalue problem 

defined by (13) is written in terms of the generalized vector {𝑑̃} components and, for the sake of structural 

clarity, (ii) it is convenient/desirable to achieve a fully modal solution, expressed in terms of the GBT 

deformation modes of all individual profiles, it is necessary to revert again to the “unconstrained generalized 

mode displacement vector”, which requires performing the operation defined by (12) (i.e., {𝑑̃} ⇒ {𝑑}). 
 
 
3. Illustrative Examples 

In order to illustrate the application and capabilities of the proposed GBT-based buckling formulation, 

numerical results concerning the flexural, flexural-torsional, local and distortional buckling of simply 
 

 
 (a) (b) 

Figure 4: (a) Lipped channel dimensions and (b) built-up column cross-section and fastener locations considered in this work. 
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supported built-up columns (uniformly compressed members) formed by two or three identical lipped 

channel profiles (i) made of steel with E=210 GPa (Young’s modulus) and v=0   (Poisson’s ratio), (ii) 

with the cross-section dimensions given in Figure 4(a) and (iii) connected by discrete fasteners. Figure 4(b) 

shows the built-up column cross-section configurations and fastener locations considered, termed 

“Built-Up A”, “Built-Up B” and “Built-Up C”, respectively  in each case, various fastener longitudinal 

spacing values are dealt with. For validation and comparison purposes, most of the GBT-based results 

obtained are compared with values o tained  y means of (i) accurate (“exact”) ANSYS (SAS 2013) 

shell finite element (SFEA) and (ii) CUFSM (e.g., Li & Schafer 2010) finite strip analyses – the latter 

concern built-up columns formed by continuously connected individual profiles (a master-slave approach 

is adopted to tie their translational and rotational degrees of freedom). 
 
Figure 5 concerns the lipped channel deformation modes employed in the GBT buckling analysis 

performed in this work  it displays the (i) in-plane shapes of the (rigid-body, distortional and local) 

conventional modes (except for mode 1  axial extension) and (ii) the out-of-plane (warping) shapes 

of the shear modes (Bebiano et al 2015). These deformation modes correspond to a lipped channel 

discretization involving nine intermediate nodes (three in the web and each flange). For subsequent 
 

 
Figure 5: GBT conventional (in-plane) and shear (out-of-plane) lipped channel deformation mode shapes. 

 

 
Figure 6: Signature curve (Pcr vs. L) of the simply supported uniformly compressed individual lipped channel profile. 
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comparison purposes, Figure 6 shows the signature curve (variation of the critical buckling load P𝑐𝑟 with 

the length L) of the simply supported uniformly compressed individual profile  also shown are the local, 

distortional and flexural-torsional critical buckling mode shapes (occurring for the lengths indicated). 

 

3.1 Flexural buckling 

Initially, the influence of the fastener spacing on the major-axis flexural buckling of laterally restrained 

columns with the Built-Up A cross-section and length L=240 cm is investigated – therefore, only the axial 

extension (1), major-axis bending (2) and shear (18-31) modes are included in the GBT analyses. Table 1 

provides, for different fastener spacing values (𝕤), column critical buckling loads (Pcr) obtained by means 

of (i) ANSYS SFEA (“exact” values, for validation purposes) and (ii) two GBT analyses, one including only 

the conventional (rigid-body) deformation modes 1 and 2, and the other including also the 14 shear 

deformation modes – the (%) values provide the differences with respect to the “exact” critical buckling 

loads. Figures 7(a)-(b) depict the GBT modal amplitude functions and/or their derivatives concerning the 

critically buckled shapes of the built-up column individual profiles P-1 and P-2, for a fastener spacing 

𝕤=60 cm. Figure 8(a) shows an ANSYS 3D view of the 𝕤=120 cm column buckled end support region, 

including a fastener detail, whereas Figure 8(b) displays the warping (axial) displacement amplitudes 

𝑢̅ along the column end-section overall (double) web, for 𝕤=120; 60; 10 cm. The observation of the 

results presented in these table and figures prompts the following remarks: 

(i) First of all, the buckling loads yielded by the ANSYS and the GBT buckling analyses including the 

shear modes virtually coincide – all differences are below 2.4%. In addition, note that the influence of 

the shear modes grows with the fastener spacing and becomes meaningful for 𝕤>40 cm, in the sense 

that removing them from the GBT analyses leads to differences above 5%. 

(ii) Besides the warping displacements associated with mode 2 (𝜑2,𝑥), the inclusion of mode 1 (𝜑1,𝑥) 

in the GBT analysis is indispensable to enable the capture the horizontal centroid shift between the 

built-up column and individual profile cross-sections. On the other hand, including the shear modes, 

whose modal amplitude functions are shown in Figure 7(b), makes it possible to capture the variation 

of the warping displacements along the connected flange regions (see Figs. 8(a)-(b)). 

(iii) The comparison between the three warping displacement curves shown in Figure 8(b) shows that the 

behavior of the 𝕤=10 cm built-up column is very close to that of a column with a single cross-section 

combining the two lipped channels. Besides the fact that the warping displacement is practically null 

at the common flange, the critical buckling loads of the two columns are practically identical (the value 

obtained with the Euler formula is 486.64 kN). 
 

Table 1: ANSYS and GBT Built-Up A column member critical buckling loads. 

Spacing  SFEA  GBT (1+2)  GBT (1+2+Shear) 

 𝕤 (cm)  Pcr (kN)  Pcr (kN) (%)  Pcr (kN) (%) 

120  358.97  381.72 6.3  361.12 0.6 

80  403.80  433.38 7.3  409.52 1.4 

60  427.16  455.12 6.5  431.89 1.1 

40  450.32  472.16 4.8  450.73 0.1 

30  461.47  478.46 3.7  459.50 -0.4 

20  472.05  483.07 2.3  465.50 -1.4 

10  481.68  485.89 0.9  470.23 -2.4 
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(a) 

 
(b) 

Figure 7: Modal amplitude functions of the critically buckled built-up column individual profiles, 𝕤=60 cm: (a) 

conventional and (b) shear modes. 

 

3.2 Flexural-torsional buckling 

Attention is now turned to assessing the influence of the fastener spacing on the flexural-torsional buckling 

behavior of columns with the Built-Up B cross-section, length L=300 cm and three fastener spacing values 

(𝕤=150; 75; 37.5 cm). Table 2 provides the column critical buckling loads (Pcr) obtained by means of the 

ANSYS SFEA (“exact” values) and GBT-based analyses – in the latter case, including either all (shear and 

conventional) deformation modes or only the conventional ones. Figure 9 displays the most relevant 

modal amplitude functions participating in the critically buckled shapes of the two individual profiles, 

whereas Figure 10 provides the 3D representations of the corresponding built-up column critical buckling 

modes  yielded by the ANSYS SFEA – for the sake of clarity, only the deformed edges are shown. The 

observation of these GBT-based and ANSYS buckling results prompts the following remarks: 

(i) Once again, there is a very good correlation between the GBT and ANSYS critical buckling loads. 

Concerning the critical buckling load accuracy improvement achieved by including the shear modes 

in the GBT analysis, the percentage differences with respect to the “exact” values decrease by about 

20% (the maximum one drops from 4.4% to 3.5%  see Table 2). 

(ii) Decreasing the fastener spacing from 𝕤=150 cm to 𝕤=37.5 cm leads to a built-up column buckling 

load increase of around 10%. 
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 (a) (b) 

Figure 8: (a) ANSYS 3D view of the 𝕤=120 cm column buckled end support region and (b) warping displacement amplitudes 

along the column end-section overall (double) web, for 𝕤=120; 60; 10 cm. 

 
Table 2: ANSYS and GBT critical buckling loads for the columns with Built-Up B cross-section and length L=300 cm. 

Spacing  SFEA  GBT (1-17 modes)  GBT (1-17+18-31 modes) 

 𝕤 (cm)  Pcr (kN)  Pcr (kN) (%)  Pcr (kN) (%) 

150  22.04  23.01 4.4  22.82 3.5 

75  23.15  24.04 3.9  23.85 3.0 

37.5  24.41  25.06 2.7  24.93 2.1 
 
(iii) Before addressing the modal amplitude functions shown in Figure 9, it is worth recalling that they are 

displayed in the “modal language” pertaining to each individual profile (see Fig   )  For instance, 

for the cross-section orientation displayed in Fig. 4(b) mode 2 (major-axis flexure) corresponds to 

a horizontal translation of profile P-1 and to a vertical translation of profile P-2 (conversely for the 

minor-axis flexural mode 3). Moreover, it also noted that, even if the built-up column cross-section 

has no symmetry, its major and minor axes are “almost horizontal” and “almost vertical”, respectively 

(slight clockwise rotation from the horizontal and vertical axes). 

(iv) There is a very close agreement between the modal amplitude functions shown in Figure 9 and the 

corresponding buckling mode shapes represented in Figure 10. However, the former provide deeper 

insight on the influence of the fastener spacing on the mechanics of built-up column buckling. 

In particular, they enable assessing in detail the variation in the distortional and local deformations, 

an assessment not feasible through the inspection of buckling mode shapes obtained from shell finite 

element analyses. 

(v) The built-up column critical buckling mode combines global, local and distortional deformation 

modes in both profiles, even if, as expected, the global ones are clearly dominant. Moreover, and 

regardless of the fastener spacing, the two profile buckled shapes exhibit quantitatively different modal 

amplitudes  those concerning profile P-1 are visibly larger. This difference stems from the fact that 

the column flexural-torsional buckling associated with the fully connected cross-section combines an 
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Figure 9: Modal amplitude functions of the columns with the the Built-Up B cross-section and length L=300 cm. 

 

 
Figure 10: ANSYS critical buckling mode shapes of the columns with the Built-Up B cross-section and length L=300 cm. 

 
 “almost vertical” translation with a torsional rotation a out its shear center, located   0  cm to the left 

and 5.56 cm above the left bottom corner of the profile P-2 cross-section (see the right hand side of 

Fig. 10). Then, the occurrence of fairly large mode 2 and mode 3 amplitudes in profile P-1 (its cross-
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section centroid is located quite far away from the built-up cross-section shear center) is just logical. 

Conversely, profile P-2 exhibits moderate mode 2 and small mode 3 amplitudes (the latter become 

very tiny for 𝕤=37.5 cm  the built-up and fully connected column buckling behaviors become closer). 

On the other hand, the torsional rotations are quite similar in both profiles and become almost identical 

for 𝕤=37.5 cm (an almost perfect overall rotation compatibility takes place). 

(vi) Finally, the participations of the distortional and local deformation modes, appearing due to the need 

to ensure compatibility at the fastener locations, are only meaningful in the close vicinity of the 

fastener locations and become smaller as the fastener spacing decreases. Once again, these modal 

participations are visibly larger in profile P-1 than in profile P-2  this is because of the different 

fastener locations (mid-points of the web and top flange, respectively). As can be observed in the 

buckling mode shapes shown in Figure 10, the distortional and local deformations are only perceptible 

to the naked eye in the buckled profiles P-1 of the built-up column with 𝕤=150 cm and 𝕤=75 cm. 

(vii) For comparison purposes, the built-up column critical buckling load provided by the CUFSM finite 

strip analysis, which assumes longitudinally continuous fasteners, is equal to 25.93 kN – 4% above 

the value obtained GBT for the column with 𝕤=37.5 cm. 

 

3.3 Distortional buckling 

The influence of the fastener spacing on the distortional buckling behavior of columns with the Built-Up B 

(two profiles) and Built-Up C (three profiles) cross-sections, length L=30 cm and two fastener spacing 

values (𝕤=15; 7.5 cm) is addressed in this section. Table 3 compares the critical buckling loads provided 

by the ANSYS SFE and GBT analyses for the built-up columns with the two cross-sections and two 

fastener spacing values considered. Figures 11 to 13 provide representations of the corresponding built-

up column critical buckling modes, namely (i) the GBT modal amplitude functions of the individual 

profiles P-1 and P-2 (note that, due to the Built-Up C cross-section symmetry with respect to the centroidal 

horizontal axis, the buckled shapes of profiles P-1 and P-3 are identical and, therefore, only the former are 

shown) and (ii) ANSYS 3D views concerning three (out of four) column buckling modes. The observation 

of these buckling results leads to the following comments: 

(i) Unlike in the previous cases, the GBT analyses including only the conventional deformation modes 

provide very accurate column critical buckling load estimates – the GBT and ANSYS (“exact”) 

values never differ by more than 3.6%. Moreover, including also the shear deformation modes in the 

GBT analyses merely drops the differences by no more than 0.3%. 

(ii) The influence of the fastener spacing on the critical buckling load is slightly more pronounced in the 

columns with Built-Up C cross-sections, for which decreasing the fastener spacing (from 𝕤=15 cm 

to 𝕤=7.5 cm) causes a critical buckling load increase of around 5% – in the columns with Built-

Up B cross-sections, such increase is only of about 3%. 
 
Table 3: ANSYS and GBT critical buckling loads of columns with Built-Up B + Built-Up C cross-sections and length L=30 cm. 

Section 
 Spacing  SFEA  GBT (1-17 modes)  GBT (1-17+18-31 modes) 

  𝕤 (cm)  Pcr (kN)  Pcr (kN) (%)  Pcr (kN) (%) 

Built-Up B 
 15  29.07  29.79 2.5  29.74 2.3 

 7.5  29.86  30.75 3.0  30.69 2.8 

Built-Up C 
 15  43.80  45.07 2.9  44.97 2.7 

 7.5  45.84  47.48 3.6  47.35 3.3 
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Figure 11: Modal amplitude functions of the columns with the the Built-Up B cross-section and length L=30 cm. 

 

 
Figure 12: Modal amplitude functions of the columns with the the Built-Up C cross-section and length L=30 cm. 

 
(iii) All built-up columns buckle in modes that combine highly dominant distortional deformations with 

very small local deformations (mostly in the vicinity of the fastener locations). The latter are (iii1) 

virtually invisible to the naked eye in the columns with the Built-Up B cross-section and (iii2) only 

barely visible near the connected flanges of the columns with the Built-Up C cross-section  this can 

be attested by just looking at Figure 13 and also by noticing that, with one exception, all local mode 

amplitude functions in Figures 11 and 12 are amplified 10 times  the exception is the mode 7 one (see 

Fig. 5), only amplified 3 times. Like in the previous cases, the modal participations are visibly larger 

(and now also more complex) in profile P-1 than in P-2, particularly in the columns with the Built-

Up C cross-section (because there are fasteners in both P-2 profile flanges) – once again, this fact 

stems from the different fastener locations in the connected profiles: web mid-point in profile(s) P-1 
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 (a) (b) 

Figure 13: ANSYS critical buckling mode shapes of columns with L=30 cm: (a) column with the Built-Up B and 

Built-Up C cross-sections and 𝕤=15 cm, and (b) column with the Built-Up C cross-section and 𝕤=7.5 cm. 
 
 and top/bottom flange mid-point in profile P-2  the latter locations are clearly more efficient in 

restraining the distortional deformations. 

(iv) Figures 11 and 12 clearly show that symmetric distortion (mode 5) is dominant in the buckled shapes 

of all the individual profiles of the four built-up columns analyzed, which is confirmed by the visual 

inspection of the three ANSYS 3D views displayed in Figure 13. In the profiles belonging to the 

columns with the Built-Up B cross-section, there is also a significant participation of anti-symmetric 

distortion (mode 6), which stems from the fact that symmetric distortion is restrained by the fasteners 

 naturally, this restraint is (iv1) more pronounced in profile P-2 (more efficient fastener location) 

and (iv1) increases as the fastener spacing decreases, which explains why, percentagewise, the presence 

of mode 6 is more meaningful in profiles P-2 of the built-up columns with 𝕤=7.5 cm. The situation is 

different for the profiles P-2 belonging to the columns with the Built-Up C cross-section, which stems 

from its symmetry with respect to the horizontal axis. The buckled shapes of these profiles are fully 

symmetric, which means that they combine only symmetric deformation modes (5+7+9+11) and, thus, 

anti-symmetric distortion (mode 6) is absent. Moreover, the local deformation modes (essentially 

mode 7) become, percentagewise, much more relevant, as attested by the modal amplitude functions 

shown on the right side of Figure 12. 

(v) The in-depth discussion concerning the column critical buckling mode features, presented in the 

previous items, was only possible because of the unique modal nature of the GBT analyses – indeed, 

it would be virtually impossible to acquire such a rich insight on the built-up column buckling 

mechanics through the ANSYS shell finite element results. 

(vi) For comparison purposes, the built-up column critical buckling loads provided by the CUFSM finite 

strip analyses (assuming longitudinally continuous fasteners) are (vi1) 31.48 kN (column with the 

Built-Up B cross-section) and (vi2) 48.88 kN (column with the Built-Up C cross-section)  values only 

slightly above those of the built-up columns with fastener spacing 𝕤=7.5 cm. Recall also that the critical 

load of an isolated profile with L=30 cm is 14.06 kN (see Fig. 6), which means that, in this particular 

case, the built-up column critical buckling load is 12% (Built-Up B cross-section) and 16% (Built-Up 

C cross-section) higher than the sum of the individual profile buckling loads. 
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3.4 Local buckling 

Finally, attention is now turned to the assessment of how the fastener spacing influences the local buckling 

behavior of stub columns with the Built-Up B cross-section, length L=8 cm and two fastener spacing values 

(𝕤=4; 2 cm – note that these fastener spacing values are smaller than those typically used in practice). The 

results presented and discussed here are similar to those reported presented in the previous sections: while 

Table 4 compares the column critical buckling loads yielded by the ANSYS SFE and GBT-based analyses, 

Figures 14 and 15 display the modal amplitude functions associated with the critical buckling modes 

and the corresponding ANSYS 3D representations. After observing all these buckling results, the following 

conclusions may be drawn: 

(i) As already found for distortional buckling (but to an even larger extent), the inclusion of the shear 

deformations modes in the GBT analyses has virtually no impact: the column critical buckling load 

estimates obtained are practically identical and very accurate – the GBT and ANSYS values never differ 

by more than 2.2%. Moreover, Figure 14 shows that the symmetric local deformation mode 7 

plays a dominant role in the buckled shapes of both individual profiles in the two built-up columns 

analyzed – note that all the remaining three modal amplitude functions and heavily amplified. 

(ii) Figure 14 also clearly shows that the built-up column local instability is triggered by profile P-2, 

which stems from the fact that its web (the wall driving the instability) is not connected/restrained 

– note how its modal amplitude functions are visibly larger than their counterparts from profile P-1, 

which is further confirmed by the visual inspection of Figure 15. 
 

Table 4: ANSYS and GBT critical buckling loads of columns with Built-Up B cross-section and length L=8 cm. 

Section 
 Spacing  SFEA  GBT (1-17 modes)  GBT (1-17+18-31 modes) 

  𝕤 (cm)  Pcr (kN)  Pcr (kN) (%)  Pcr (kN) (%) 

Built-Up B 
 4  39.85  40.72 2.2  40.71 2.1 

 2  39.86  40.74 2.2  40.72 2.1 

 

 

Figure 14: Modal amplitude functions of the columns with the the Built-Up B cross-section and length L=8 cm. 
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 (a) (b) 

Figure 15: ANSYS buckling modes of columns with the Built-Up B cross-section, L=8 cm and (a) 𝕤=4 cm, and (b) 𝕤=2 cm. 
 

(iii) The built-up column critical local buckling load and associated mode shape literally unaffected by the 

fastener spacing. Moreover, the presence of the fasteners (regardless of the spacing) also has a 

minute influence, as attested by the fact that the critical local buckling of an isolated profile with 

L=8 cm is 20.23 kN (see Fig. 6), i.e., just very slightly below one half of the built-up column value, 

which is in agreement with the fact that only an extremely small participation of anti-symmetric 

deformation modes (6, 8, 10) was detected in the profile P-2 buckled configuration. 

(iv) Finally, for comparison purposes, note that the built-up column critical local buckling load provided 

by the CUFSM finite strip analysis (assuming longitudinally continuous fasteners) is 40.42 kN. 
 
 
4. Concluding Remarks 

This paper reported the available results of an ongoing investigation on the use of GBT to analyze 

the buckling behavior of cold-formed steel built-up members connected by discrete fasteners. The first step 

of this investigation consisted of formulating a GBT-based finite element that accounts for the presence of 

the discrete fasteners by means of constraint equations  it leads to a simple numerical implementation, 

while retaining the GBT unique modal language. Then, in order to illustrate the application and potential 

of the proposed GBT formulation, a number of numerical results were presented and discussed  they 

dealt with the flexural, flexural-torsional, distortional and local buckling behavior of simply supported built-

up columns formed by two or three identical lipped channel profiles connected by fasteners with different 

spacing values. For validation and assessment purposes, most GBT-based buckling results were compared 

with values yielded by refined ANSYS (shell finite element) and CUFSM (finite strip) analyses, also 

modeling the fasteners through constraint equations – an excellent agreement was invariably found. 
 

At this stage, it is worth noting that the above GBT formulation was applied in this work exclusively to 

uniformly compressed built-up members. In the case of built-up members acted by arbitrary loadings, such 

as those involving end moments or transverse forces, its application becomes slightly more complex, due 

to the need to determine accurately the member pre-buckling stress state. This can only be achieved by 

means of preliminary GBT-based linear analyses (i) capable of capturing pre-buckling shear and transverse 

normal stresses, i.e., including shear and transverse extension deformation modes, and (ii) accounting for 

the possibility of slip occurring between the connected walls. The authors are currently working on a 

GBT-based finite element formulation able to perform this task. 
 

Finally, it must also be mentioned that, even if the approach adopted in this work to incorporate the 

presence of the discrete fasteners in the GBT leads to a rather straightforward numerical implementation 
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and seems to yield quite reasonable built-up member buckling load estimates, the authors are fully aware 

that their quality can be improved by considering more realistic (and sophisticated) simulations of the 

fastener influence. Such simulations must enable incorporating several aspects in the GBT analyses, 

namely (i) the fastener geometry and stiffness, (ii) the gaps between the connected walls, (iii) the wall 

localized flexibility/crushing phenomenon near the fastener locations and (iv) the possible occurrence of 

unilateral contact between adjacent connected walls. Work is under way to incorporate the above effects 

in the GBT formulation presented in this study  hopefully, the fruits of such research effort will be 

reported in the not too distant future. 
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