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Abstract 

This paper focuses on the behavior, modeling, and evaluation of high-strength steel beams used as 

girders in moment-resisting frame systems (MRFs). This study utilizes a fusion of experimental 

test outcomes, 2D fiber-based simulations and cutting-edge Artificial Intelligence (AI) techniques 

to develop a concentrated plasticity-based model that includes the effect of local buckling in high-

strength steel beams. The key parameters influencing the behavior of high-strength steel beams 

are: (i) geometric details, (ii) material stress-strain behavior, and (iii) fracture/damage failure 

criteria. This paper summarizes the experimental data on the monotonic and cyclic behavior of 

high-strength steel beams to calibrate and validate 2D fiber-based models. Subsequent parametric 

studies are then conducted to investigate the effects of material and geometric parameters on high-

strength steel beams' cyclic behavior and ductility. The Artificial Neural Network (ANN) enriches 

the dataset, while the Gene Expression Programming (GEP) technique aids in formulating 

idealized flexure-rotation relationships. These relationships play a crucial role in the potential 

development of design methods founded upon recently proposed allowable strain criteria and/or 

continuous strength methodologies by other researchers.  

 

1. Introduction 

High-strength steels (HSSs) are structural steels having a nominal yielding strength Fy greater than 

specified in the current design codes; for instance, 345 MPa is the limit in the AISC 360-22 

Specifications (American Institute of Steel Construction 2022). Recent steel-making 

breakthroughs and technical advances have resulted in suitable HSS with enhanced weldability 

and ductility. HSS constructions provide various advantages, including reduced material use, 

smaller earthquake response, lower consumption of energy, and more friendly to the environment. 

Compared to conventional strength steel (CSS), with a nominal yielding strength of less than 525 

MPa, HSSs have two distinct features that may result in variable mechanical performances when 

utilized in structures. First, the stress-strain curves of thermomechanical rolled HSS derived from 

tension coupon testing show a higher yielding strength to tensile strength (Fy/Fu) ratio but no 

visible yielding plateau. Second, geometric defects and residual stresses in welded-section 
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elements made of HSS are thought to have less of an influence on local buckling behavior 

(Rasmussen and Hancock 1992). 

 

The existing design codes, namely the American Institute of Steel Construction (AISC 360-22) 

and Eurocode 4 EN1994-1-1 (EC4), do not adequately address the design requirements for HSS 

flexural members. These codes do not sufficiently capture the unique characteristics and 

considerations associated with HSS flexural members. Furthermore, when HSS is employed in 

flexural members, it frequently allows for a reduction in component plate thickness compared to 

conventional CSS (Compact Shape Section) plates. As a result, the width-to-thickness ratio of HSS 

component plates is often higher, rendering HSS flexural members more susceptible to local 

buckling behavior. Limited research has delved into the flexural performance of HSS, considering 

material properties, loading conditions, geometry, and configurations. McDermott (McDermott 

1969) investigated A514 steel I-section beams with a yield strength of 690 MPa, exploring local 

and overall buckling under varying moment conditions. Lee et al. (Lee et al. 2013) studied flange 

slenderness impact on HSB800 and HSA800 steel I-section beams (800 MPa yield strength).  

 

High-strength steel's unique characteristics pose challenges due to limited studies compared to 

conventional steel types (e.g., ASTM A36, A572, A992).  Notably, Green (Green, Ricles, and 

Sause 2001) has extensively investigated the structural ductility of high-strength steel members in 

his Ph.D. dissertation and subsequent publications. His studies encompassed a range of 

experiments on welded I-shaped HSLA-80 flexural members, with a focus on the impact of 

material stress-strain characteristics, cross-sectional geometry, and various loading conditions. 

Through his experimental investigations, Green observed that the stress-strain characteristics of 

high-strength steel (HPS) have a significant influence on the inelastic behavior of flexural 

members, particularly when compared to similar members constructed from mild steel. These 

findings highlight the importance of understanding and considering the unique stress-strain 

properties of high-strength steel in assessing the inelastic behavior and rotational ductility of such 

structural elements. The experimental research conducted by Schillo and Feldmann (Schillo and 

Feldmann 2017) concludes a rotation capacity of R = 3 for specimens made of S700 but lesser 

values for S970 steel. In addition, the influence of the loading conditions was observed, where the 

four-point loading beam exhibited greater rotational capacity compared to the three-point loading 

beam, where strains tend to localize in a more concentrated manner.   

 

Designing structures for seismic resilience involves accounting for inelastic deformations. 

Therefore, in recent times, there has been a growing inclination towards the development of 

plasticity models for high-strength steel beams. These models aim to facilitate the utilization of 

computer-aided static and dynamic analyses, enabling extensive and comprehensive parametric 

studies. In a related study, Chen et al.  (Chen et al. 2014 and Chen et al. 2016) explored the 

hysteretic behavior of Q690 high-strength steel H-section and box-section beam columns via 

cyclic loading tests. Wang et al. (Wang et al. 2014) focused on high-strength welded steel beam-

column members, developing a trilinear hysteretic model for precise descriptions of cyclic 

performance under seismic loads. The authors introduced a fiber-based model in their recent study 

to simulate local buckling effects in high-strength steel beams. Each fiber's stress-strain curve in 

their model was established through nonlinear regression analysis of a benchmarked 3D finite 

element (FE) model and fine-tuned using experimental test outcomes. While their 3D FE and 2D 

fiber-based models address various factors believed to influence behavior, like initial 
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imperfections, residual stresses, and stress-strain curve attributes, it's computationally expensive 

and limited to specific computer software featuring fiber-based modeling capabilities. 

 

Artificial Intelligence (AI) has transitioned from computer science to practical applications, 

demonstrating its transformative potential. For instance, it excels in accurately predicting the 

behavior of structural systems and components (Alghossoon et al. 2023). This study utilizes two 

types of AI techniques and builds upon the authors’ previous published research by introducing a 

concentrated plasticity model to simulate the effect of local buckling in HSS beams signifies a 

pivotal leap forward in seismic structural engineering. This proposed model represents a crucial 

development, enabling design engineers, within commonly used software platforms to investigate 

the behavior of seismic force-resisting systems.  

 

2. Methodology 

 

2.1 Methodology in a Nutshell 

This study attempts to utilize the authors’ previous research outcomes on HSS beams and the most 

cutting-edge AI techniques for the development of an idealized concentrated plasticity model that 

considers the effect of local buckling in high-strength steel beams. Such a model can be 

implemented in most commercial FE software as shown in Fig.1 (b). A large-scale parametric 

study is established to assess the impact of various geometric parameters (h/b, h/ tw, b/ tf, tf/tw) on 

the moment-rotation behavior of a cantilever HSS beam. The resulting moment rotation curves are 

normalized to the section flexural strength at yield and simplified using a tri-linear curve. The 

anchor points in the idealized tri-linear curve represent yielding strength (My, Өy), peak strength 

(Mu, Өu), and section residual strength (MR, ӨR) as denoted in Fig. 1. The mechanism of the 

proposed anchor points is investigated using the artificial neural network and gene expression 

programming. Finally, the developed concentrated plasticity model will be validated against 

experimental tests from the literature using one of the commercial FEM software that includes 

multi-linear plastic springs/links (such as SAP 2000, ETABS., etc.). 

 

 

 
(a) (b) 

Figure 1 : (a) The proposed tri-linear moment rotation curve of HSS beams, (b)  

Multi-linear plastic link in SAP 2000 

 

2.2 Finite element model description 

The numerical analysis of the high-strength steel beam in this paper was conducted using the 2D 

fiber-based model proposed in the authors' prior research (Alghossoon and Varma 2023) as shown 
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in Fig.2. This model was developed based on extensive experimental and numerical simulation 

outcomes. The developed effective stress-strain curve shown in Fig. 2 holds the key to developing 

a useful fiber-based model that takes into account several aspects that are believed to control the 

high-strength steel beam’s cyclic behavior, such as the initial imperfection, residual stresses, 

material hardening model, and material damage model.  

 

The fiber-based model is implemented in OpenSEES (OS), as shown in Fig. 2 and Table. 1, 

comprises sub-elements interconnected at the boundaries through cross-section fibers. The choice 

of the assigned element type is contingent upon the expected behavior and the desired response, 

encompassing elastic behavior, peak force, and fracture point. In this study, a displacement-based 

element, typically a Bernoulli-type element, was adopted, following standard finite element 

procedures to approximate the displacement field for deformation interpolation. To address shear 

deformation at the end of the beam model, a shear spring was incorporated, as illustrated in Fig. 

2. The length of the plastic hinge in the I-shape steel sections can be quite complex, However, it 

was found that a simple expression yielded a reasonable estimate of the length such that 1.8b and 

2.5b for sections with depth-to-width ratio h/b of 1 and 2, respectively. The author adopted the 

regularization techniques to mitigate mesh sensitivity associated with the use of softening material. 

This method ensures the maintenance of the same fracture energy dissipation (area under the stress-

strain curve) as that of the reference length, representing the physical length of the plastic hinge. 

 

 
 

(a) (b) 

Figure 2 : (a) Fiber-based model of HSS beam using OpenSEES, (b) Idealized stress-

strain curve (Alghossoon and Varma 2023) 
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Table 1: Normalized stress and strain expression in the fiber-based model (Alghossoon and  Varma 

2023) 
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2.3 Validation of the OpenSEES model 

To validate the discussed (OS) modeling, the test results of high-strength steel beams conducted 

by Shinohara et al. (Shinohara, Suekuni, and Ikarashi 2012), Elkady and Lignos (Elkady and 

Lignos 2018), Haia et al. (Hai et al. 2019), and Green et al. (Green, Ricles, and Sause 2001) were 

utilized. The verification process involved comparing the OS model results to the experimental 

data, considering factors such as material properties, model dimensions, restraining configurations, 

initial geometric imperfections, and residual stresses, as well as other available test information 

from the literature. The comparison between the test results and the fiber-based model results is 

presented in Fig. 3. It was observed that the findings obtained from the fiber-based model exhibited 

a high level of concurrence with the experimental results, in terms of initial stiffness peak strength, 

cyclic degradation, and overall behavior. 
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Figure 3 : Comparison between the OS results and experimental tests. 

 

The calibrated 2D fiber-based model of the high-strength steel beam was employed to create a 

series of steel beam models. These models varied in the flange and web slenderness ratios, aiming 

to explore how different section shapes affect both the monotonic and cyclic behavior of the beams. 

The ratio between depth and width in the chosen sections closely resembles the standard US steel 

sections like W12, W14, and W21. Additionally, it aligns with the recommended slenderness ratio 

often observed in the built-up sections of conventional buildings. The idealized trilinear curves 

shown in Fig. 4 are examples of the adopted moment-rotation curve for the selected high-strength 

steel beams. The coordinate of the three anchor points on the trilinear curve at the compression 

side of the curve represents the moment at yield, peak flexural strength, and residual section 

capacity. 
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Figure 4 : Idealized back-bone curve of the hysteresis loop from numerical simulations. 
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2.4 Application of Artificial Intelligence 

 

2.4.1 Artificial Neural Network 

Artificial Neural Networks (ANNs) are a relatively new computational tool that has significant 

applicability in a variety of civil engineering domains. ANNs are highly regarded for their 

predictive capabilities, enabling them to establish correlations between input variables and 

associated outputs. Over recent years, numerous researchers have employed ANNs to tackle 

intricate challenges in structural engineering. For instance, Mallela and Upadhyay (Mallela and 

Upadhyay 2016) utilized ANNs to forecast the buckling load of laminated composite stiffened 

panels subjected to in-plane shear loading. Alghossoon et al. (Alghossoon et al. 2023) utilized 

different AI techniques to predict the shear strength of circular concrete-filled tube members. 

Dwairi and Tarawneh (Dwairi and Tarawneh 2022) used ANNs to estimate inelastic displacement 

ratios in structures constructed on soft soils. Similarly, Asteris and Mokos (Asteris and Mokos 

2020) employed ANNs to predict concrete compressive strength. Previous studies have concluded 

that the Artificial Neural Network (ANN) model has remarkable capabilities in predicting 

structural behaviors, optimizing designs, and facilitating decision-making processes. 

The architecture of an ANN generally comprises many layers, including an Input Layer, a Hidden 

Layer, and an Output Layer as shown in Fig.5. Each layer is made up of interconnected processing 

units where signals or inputs (xi) are multiplied by weight values (wji) and added to bias values 

(Bji) at each unit (Eq.1). The combined inputs (Ij) are then passed through a nonlinear transfer 

function f(Ij) to produce the processing outputs, which serve as inputs for the subsequent layer. In 

this study, a hyperbolic tangent transfer sigmoid function is employed. It is a common practice to 

separate the dataset into 80% for training the model and 20% for testing and validation. The ANN 

model is trained using the Levenberg-Marquardt optimization approach, which adjusts the input 

weights and bias values to minimize the mean square error (MSE) and achieve optimal 

performance. A combination of squared errors and weights is minimized during the training 

process, employing Bayesian regularization. The training continues until the MSE converges, 

indicating no further improvement. 

                         

                                             𝐼𝑗 = ∑ 𝑤𝑗𝑖  𝑥𝑖 + 𝐵𝑗𝑖 (1)                                                                                                                 

  

 
Figure 5 : General structure and processing unit of ANNs. 
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2.4.2 Integrating Gene Expression Programming (GEP) in Structural Engineering Applications 

At its core, GEP operates as an evolutionary algorithm inspired by the principles of genetic 

evolution. It mirrors biological gene expression through an iterative process that evolves 

mathematical expressions by encoding them as chromosomes and refining them across successive 

generations. Its versatility spans various domains such as optimization, modeling, and pattern 

recognition, positioning it as a promising tool in computational intelligence. In the realm of 

structural engineering analysis, the utilization of advanced computational tools has seen a 

significant surge. GEP emerges as a potent methodology, offering a robust approach to model 

complex relationships between input parameters and structural responses such as the bond strength 

of fiber-reinforced polymer and concrete (Quayyum 2010), predicting the ultimate axial strain of 

FRP-confined concrete (Mansouri et al. 2018) and the shear strength of slender RC beams without 

shear reinforcement (Gandomi et al. 2014). 

 

Gene Expression Programming (GEP) functions by encoding potential solutions to problems into 

strings of genes organized within chromosomes, like the human analogy and the mechanisms of 

gene expression. Initially, a population of chromosomes is created randomly, encompassing a 

combination of functions, terminals, and variables. These chromosomes undergo expression, 

where their genes assemble into mathematical expressions typically structured in a tree format. An 

assessment against a predetermined fitness function indicates the efficacy of these mathematical 

expressions. The selection of the best fitness chromosomes via an iterative procedure evolves 

through the action of three basic genetic operators to generate new individual chromosomes, 

namely; Reproduction (copies chromosomes without any modification), Crossover (the exchange 

of genetic material), and Mutation (the introduction of random alterations). This iterative 

evolutionary process persists across numerous generations, refining the solutions within the 

population until predefined termination conditions, such as achieving a particular fitness threshold 

or completing a designated number of generations, are fulfilled. Ultimately, the program 

demonstrates the highest performance solution found in the final population. 

 

Fig. 6 represents the five core elements in GEP: (1) Function shape that describes mathematical 

operations used in gene expressions, guiding how variables are manipulated. (2) The peripheral 

group that represents structural parameters like material properties or dimensions in equations. (3) 

Evaluates how well gene expressions predict structural behavior, using metrics like RMSE. (4) 

Control of variables that manage which parameters influence models, focusing analysis on critical 

factors. (5) Stopping criteria. Figure. 6 shows the GEP algorithm used to generate the expression 

tree (Murad 2021). 
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Figure 6 : Gene expression algorithm. 

 

The initial step in the algorithm is to select the five items mentioned previously. The initial 

functions are generated at random using the function form and terminals given. The method is 

continued for a certain number of generations or until a satisfactory categorization rate is obtained. 

The functions that were constructed are then executed and turned into a tree structure. Following 

that, the fitness function is used to evaluate the results of the functions created; if the results are 

acceptable, the process is ended. The result is represented in the form of tree structures. These 

trees, known as GEP expression trees, enable the explanation of mathematical functions created in 

an easy-to-read format as shown in Fig. 7. 
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Figure 7 : Mathematical expression and basic genetic operators in Gene expression tree 

 

3. Conclusion 

In conclusion, this study presents a robust approach to developing a concentrated plasticity model 

for high-strength steel beams, accounting for local buckling and member slenderness 

considerations. This study investigated the monotonic and cyclic behavior of the high-strength 

steel beam leveraging a calibrated 2D fiber-based model and artificial intelligence techniques, 

specifically Artificial Neural Networks and Gene Expression programming. The primary aim of 

this study is to provide a comprehensive and user-friendly model, accessible for engineers in 

design offices and researchers within commonly used commercial FEM software to simulate the 

local buckling behavior of high-strength steel beams. 

 

4. Future work 

The establishment of the concentrated plasticity model using AI technique is currently under 

investigation and will be proposed in the next research paper. The assessment of the high-strength 

steel beam compactness limit and ductility will be investigated in future work. 
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