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Abstract 

In the reported research the effect of prebuckling in-plane deflections on the critical moment to 

lateral-torsional buckling of beams is investigated. In this paper there is a special focus on the 

influence of end support conditions. Analytical derivations are completed for selected end 

supports, which lead to closed-form equations to calculate the critical moment with considering 

the prebuckling deflection. Numerical studies are performed, too: critical moment values were 

calculated with and without considering the effect of prebuckling deflection, using the derived 

analytical formula, beam finite element method, and shell finite element method. In general, the 

results from the various methods show reasonable coincidence, though some discrepancies are also 

revealed. One of the most important conclusions is that – unlike suggested by the literature, – the 

prebuckling deflections are not always positive, but for certain end supports can decrease the 

critical moment.  

 

1. Introduction 

Lateral-torsional buckling (LTB) is a classic type of instability of beams. A classic and simple 

analysis approach is the so-called linear buckling analysis (LBA), which assumes a perfectly 

elastic and imperfection-free structure, but considers some nonlinear terms in the geometric 

equations. LBA leads to the buckled shapes and corresponding critical load factors. In the case of 

LTB, the critical load is typically represented by the critical moment. Though stability phenomena 

are influenced by the imperfections, still, LBA is a prominent tool to understand buckling, and 

widely employed in many design procedures.  

 

In classic LBA, the equations to be solved are written on the original, undeformed structure. It was 

observed, however, that the primary, first-order deformations might influence the solution. As the 

load is increased on the structure, the primary deflections increase, and by the time when buckling 

occurs, the structure is already deflected. If this deflected shape (which is independent of the 

imperfections, since it exists even if the original structure is perfect) is considered in the LBA, the 

associated critical load is different from the one without considering the prebuckling deflection. It 

is reasonable to assume that prebuckling deflection is never zero, however, whether it has 

important or negligible effect on the buckling, is dependent on the structure. 
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In the case of beams subjected to LTB, the effect of the prebuckling deflection was included even 

in the very first analytical solution for the LTB problem, in Michell (1899). Later, the solution 

without the prebuckling deflection effect became widely known from the work of Timoshenko 

(1910), who clarified the importance of warping, and published the well-known classic formula 

for the critical moment for LTB. The influence of prebuckling displacement is discussed in a 

relatively small number of papers, e.g., in Trahair and Woolcock(1973),Vacharajittiphan et al. 

(1974), Roberts and Azizia (1983), Pi and Trahair (1992), Attard and Kim (2010), Erkmen and 

Attard (2011). 

 

There seems to be a consensus in the available literature that the prebuckling deformations increase 

the critical moment, and that the increment is dominantly determined by the lateral rigidity of the 

beam. However, there are some discrepancies, too, both in the proposed analytical expressions and 

in the numerical results. Moreover, the reported researches mostly focused on the simplest case of 

LTB, namely: simply supported single-span beams, subjected to uniform bending, and with doubly 

symmetric I-shaped cross-sections. Other cases are hardly investigated. To better understand the 

role of prebuckling deflections on LTB, we started a research project. 

 

This paper focuses on the end supports. In Section 2 an analytical derivation is shown which is 

applied to selected end supports in Section 3, leading to closed-form equations to calculate the 

critical moment with considering the prebuckling deflection. Numerical studies are presented in 

Section 4: critical moment values calculated with and without considering the effect of prebuckling 

deflection are calculated, using the derived analytical formula, beam finite element method, and 

shell finite element method. In general, the results from the various methods show reasonable 

coincidence, though some discrepancies are also revealed, as summarized in Section 5. 

 

2. Analytical derivation 

 

2.1 General 

In this paper the derivation is employed as in Pi and Trahair (1992). First the derivation steps are 

briefly summarized, then the derivation is applied for beams with various support conditions. In 

all the discussed cases the beam is assumed to have doubly symmetric cross-section, and the beam 

is subjected to uniform moment. The problem is illustrated in Fig. 1, (for forked supports and I-

shaped cross-section,) where the considered coordinate axes and the u, v, and w translations are 

shown, too. 

 

 
 

Figure 1: The discussed beam problem, and basic notations. 
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2.2 Total potential 

The energy method is applied. The total potential is composed of the strain energy and the work 

as follows: 
 

Π = 𝑆 − 𝑊 (1) 

where  

𝑊 = ∫ ∫ 𝜀𝑧

𝑀𝑥

𝐼𝑥
𝑦𝑑𝐴

𝐴

𝐿

0

𝑑𝑧 (2) 

𝑆 =
1

2
∫ ∫ 𝐸𝐼𝑦𝜅𝑦

2 + 𝐸𝐼𝑤𝜅𝑧𝑑
2 + 𝐺𝐽𝜅𝑧

2𝑑𝐴
𝐴

𝐿

0

𝑑𝑧 (3) 

 
where 𝑀𝑥 is the applied (uniform) moment, 𝐼𝑥 and 𝐼𝑦 are the second moments of area for the 𝑥 

and 𝑦 axes, respectively, 𝐼𝑤 is the warping modulus, 𝐽 is the torsional inertia, 𝜀𝑧 is the (second-

order) longitudinal normal strain, 𝜅𝑦 is curvatures of the beam axis (in the lateral direction), 𝜅𝑧 is 

the rate of change of the twisting rotation, 𝜅𝑧𝑑 is the derivative of 𝜅𝑧𝑑 with respect to 𝑧, and 𝐸 and 

𝐺 are the Young’s modulus and shear modulus, respectively. 

 

2.3 Curvatures 

In the calculation of the 𝜅  curvatures some higher-order terms must be considered. The 

considerations are not detailed here, but the same formulae are used as in Pi and Trahair (1992), 

as follows:  
 

𝜅𝑦 = 𝑢′′ + 𝜑𝑣′′          𝜅𝑧 = 𝜑′ −
1

2
𝑢′𝑣′′ +

1

2
𝑢′′𝑣′ (4) 

 

2.4 Longitudinal normal strain 

To calculate the work of the loads/stresses, we need the strains. Now we have longitudinal stresses 

only, hence the only strain term needed is the longitudinal normal strain. This is derived from the 

𝑢, 𝑣, and 𝑤 translations, based on the Green-Lagrange strain tensor, as follows: 
 

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
+

1

2
((

𝜕𝑢

𝜕𝑧
)

2

+ (
𝜕𝑣

𝜕𝑧
)

2

) (5) 

 
Since the strains should be calculated on the deformed geometry, the above expression leads to a 

rather lengthy formula. If we keep the second-order term and one single third-order term, the 

(nonlinear) longitudinal normal strain over the cross-section is approximated as follows: 
 

𝜀𝑧 = (𝜑𝑢′′ +
1

2
𝜑2𝑣′′) 𝑦 (6) 

 

2.5 Displacement functions 

In order to be able to calculate the total potential, we need displacement functions. For the primary 

displacement, we can employ classic strength of materials equations. The moment is uniform along 

the length, and the supports are pinned in the vertical plane, thus, the displacement of the beam’s 

system line is a quadratic function: 
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𝑣(𝑧) = 𝑣𝑚4𝑧(𝐿 − 𝑧)/𝐿2 (7) 
 
where 𝐿 is the member length, and 𝑣𝑚 is the maximum vertical displacement: 
 

𝑣𝑚 =
𝑀𝑥𝐿2

8𝐸𝐼𝑥
 (8) 

 
The assumed displacement functions for the lateral and torsional displacements are dependent on 

the supports, and will be discussed in Section 3. However, in each case the displacement functions 

are expressed by two parameters: the 𝑢𝑚 and 𝜑𝑚 displacement amplitudes of the lateral translation 

and twisting rotation, respectively. 

 

2.6 Critical moment  

Considering the above displacement functions, the total potential can be calculated. The strain 

energy function will have 11 terms, each of them quadratic expressions of the displacement 

parameters. Similarly, substituting the normal strain expression into the work formula and 

performing the integration, the work is obtained. It will have two terms, each of them quadratic 

expressions of the displacement parameters.  

 

Then, we need to take the partial derivatives of the potential, which should be zero. This leads to 

a system of two equations. The equations are linear in 𝑢𝑚  and 𝜑𝑚 , and the equations are 

homogeneous. Nontrivial solution exists if the ‘𝑪’ coefficient matrix is singular. A straightforward 

solution is to take the determinant of the coefficient matrix, and make it equal to zero.  

|𝑪| = 0 

In classic LTB derivations the resulting equation is quadratic in terms of 𝑀𝑥. However, in our case 

this equation is 4th-degree due to the considered higher-order terms in various strain and curvature 

expressions. To simplify the problem, we need to apply two approximations. (i) First, we need to 

eliminate the terms with 𝑀𝑥
4. Since there are no terms with 𝑀𝑥

3, now the equation becomes 

quadratic. (ii) Secondly, we should neglect certain terms. The consideration is that in typical 

doubly-symmetric thin-walled sections the various flexural and torsional stiffness terms are 

strongly different. It is assumed, therefore, that: 
 

(
𝐸𝐼𝑤/𝐿2

𝐸𝐼𝑥
)

2

≅ 0   (
𝐺𝐽

𝐸𝐼𝑥
)

2

≅ 0     
𝐺𝐽(𝐸𝐼𝑤/𝐿2)

(𝐸𝐼𝑥)2
≅ 0 (9) 

 
With these approximations the quadratic equation is solvable and we can have closed-form 

solution for the critical moment  

 

3. Analytical formulae 

 

3.1 Considered cases 

In the plane of the bending both ends are simply supported, i.e., they can freely rotate around the 

x-axis. From the aspect of LTB, however, it is also important how they are supported against y-

axis rotation and warping. Various combinations of rotational and warping supports are considered 

here. If the end cross-section is free to rotate in the lateral direction (i.e., around the y axis), it will 

be notated as ‘Pr’, while if it is fixed against lateral rotation, it is notated as ‘Fr’. Similarly, if 

warping can freely occur, it is ‘Pw’, while if warping is prevented, it is ‘Fw’. Accordingly, for 

example, PrPw-PrPw identifies the basic case of lateral-torsional buckling, when forked supports 
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are applied. Or, FrFw-FrFw is the case when both supports are fixed from the viewpoint of LTB 

(though pinned in the primary direction).  

 

The cross-sections are doubly-symmetric. The most typical such section is doubly-symmetric I-

shaped section (abbreviated here as ‘DSI’). However rectangular hollow sections (‘RHS’) are also 

doubly symmetric and can buckle if the section is relatively narrow. The main difference between 

DSI and RHS is that an RHS has much larger torsion stiffness compared to a DSI.  

 

3.2 PrPw-PrPw 

The assumed displacement functions for the lateral-torsional buckling are simple half sinewaves, 

in accordance with the assumed forked supports: 
 

𝑢(𝑧) = 𝑢𝑚sin
𝜋𝑧

𝐿
            𝜑(𝑧) = 𝜑𝑚sin

𝜋𝑧

𝐿
 (10) 

 
where 𝑢𝑚 and 𝜑𝑚 are the displacement amplitudes (at the middle of the beam).  

 

By following the derivation steps as summarized above, it is possible a closed-form solution for 

𝑀𝑐𝑟, which is identical to the one in Pi and Trahair (1992), as follows: 
 

𝑀𝑐𝑟 = 𝑀𝑐𝑟0 √(1 −
𝐼𝑦

𝐼𝑥
) (1 −

𝐺𝐽

2𝐸𝐼𝑥
(

𝐺𝐽

2𝐸𝐼𝑥
+

𝜋2𝐸𝐼𝑤

2𝐸𝐼𝑥𝐿2
))⁄  (11) 

 
where 𝑀𝑐𝑟0 is the critical moment without considering the prebuckling deflection: 
 

𝑀𝑐𝑟0 =
𝜋

𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤

𝐿2
) (12) 

 
In typical DSI sections: 
 

𝐸𝐼𝑤/𝐿2

𝐸𝐼𝑥
≅ 0     

𝐺𝐽

𝐸𝐼𝑥
≅ 0 (13) 

 
hence the 𝑀𝑐𝑟 formula can further be simplified to: 
 

𝑀𝑐𝑟 = 𝑀𝑐𝑟0 √(1 −
𝐼𝑦

𝐼𝑥
)⁄  (14) 

 
The 𝑀𝑐𝑟/𝑀𝑐𝑟0 ratio for this case (which will also be called as reference ratio), therefore, is: 
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
)⁄  (15) 

 

and the relative increment of the critical moment due to prebuckling deflection – which will be 

referred to here as reference increment – is as follows: 
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𝑀𝑐𝑟 − 𝑀𝑐𝑟0

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
)⁄ − 1 (16) 

 
In the case of RHS, it is reasonable to assume that the warping is nearly zero, however, at the same 

time, 𝐺𝐽 is not small anymore. Hence, instead of applying the approximations in Eq (13), we can 

introduce the following approximations: 
 

𝐸𝐼𝑤/𝐿2

𝐸𝐼𝑥
≅ 0   

𝐺𝐽

𝐸𝐼𝑥
≫ 0 (17) 

 
Accordingly, the simplified formula for the critical moment ratio is:  
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √1 −

𝐼𝑦

𝐼𝑥
−

𝐺𝐽

2𝐸𝐼𝑥
+

𝐺𝐽

2𝐸𝐼𝑥

𝐼𝑦

𝐼𝑥
⁄ = 1 √(1 −

𝐼𝑦

𝐼𝑥
) (1 −

𝐺𝐽

2𝐸𝐼𝑥
)⁄  (18) 

 

3.3 FrFw-FrFw 

The assumed displacement functions in this case are: 
 

𝑢(𝑧) = 𝑢𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
)             𝜑(𝑧) = 𝜑𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
) (19) 

 
where 𝑢𝑚 and 𝜑𝑚 are the displacement amplitudes (at the middle of the beam).  

 

The 𝑀𝑐𝑟0 without prebuckling deflections is: 
 

𝑀𝑐𝑟0 =
𝜋

0.5𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤

(0.5𝐿)2
) (20) 

 
For DSI sections the simplified formula is: 
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √1 +

𝐼𝑦

𝐼𝑥
− 2 (

𝐼𝑦

𝐼𝑥
)

2

⁄ = √(1 −
𝐼𝑦

𝐼𝑥
) (1 + 2

𝐼𝑦

𝐼𝑥
) (21) 

 
For RHS sections the simplified formula is: 
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
) (1 + 2

𝐼𝑦

𝐼𝑥
−

3𝐺𝐽

2𝐸𝐼𝑥
)⁄  (22) 

 

3.4 PrPw-FrFw 

The assumed displacement functions are as follows: 
 

𝑢(𝑧) = 𝑢𝑚 (sin
𝑘𝐿 𝑧

𝐿
−

𝑧

𝐿
sin (𝑘𝐿))             𝜑(𝑧) = 𝜑𝑚 (sin

𝑘𝐿 𝑧

𝐿
−

𝑧

𝐿
sin (𝑘𝐿)) (23) 

 
where 𝑢𝑚 and 𝜑𝑚 are parameters related to the displacement amplitudes. Moreover, for the 𝑘𝐿 it 

must be satisfied that 𝑘𝐿 = tan (𝑘𝐿), from which the approximate value of 𝑘𝐿 is 4.4934. 
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The 𝑀𝑐𝑟0 without prebuckling deflections is: 
 

𝑀𝑐𝑟0 =
𝑘𝐿

𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

(𝑘𝐿)2𝐸𝐼𝑤

𝐿2
) =

𝜋

0.6992𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤

(0.6992𝐿)2
) (24) 

 
For DSI sections the simplified moment ratio formula is: 
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= √(1 −

𝐼𝑦

𝐼𝑥
) (1 +

2𝐼𝑦

3𝐼𝑥
) (25) 

 
For RHS sections the formula is: 
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
) (1 +

2𝐼𝑦

3𝐼𝑥
−

𝐺𝐽

𝐸𝐼𝑥

(𝑘𝐿)2 + √(𝑘𝐿)2 + 1 − 1

(𝑘𝐿)2
)⁄  (26) 

 
The numerical value of the coefficient of the 𝐺𝐽 term is approx. 1.1785.  

 

3.5 PrFw-PrFw 

The assumed displacement functions this case are: 
 

𝑢(𝑧) = 𝑢𝑚sin
𝜋𝑧

𝐿
            𝜑(𝑧) = 𝜑𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
) (27) 

 
where 𝑢𝑚 and 𝜑𝑚 are the displacement amplitudes (at the middle of the beam). It is to be noted 

that though the above functions satisfy the considered support conditions, they lead to higher 

critical moment values compared to those obtained as the smallest critical moments from 

numerical methods.  

 

The 𝑀𝑐𝑟0 without prebuckling deflections is: 
 

𝑀𝑐𝑟0 =
𝜋

8/(3𝜋) 𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤

(0.5𝐿)2
) (28) 

 
For DSI sections the simplified formula is: 
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
) (1 +

𝐼𝑦

𝐼𝑥
(

27𝜋2

256
− 1))⁄  (29) 

 
Since 27𝜋2 256⁄ − 1 = 0.0409, this formula is nearly identical to the reference ratio.  

 

For RHS sections the simplified formula is: 
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
) (1 +

𝐼𝑦

𝐼𝑥
(

27𝜋2

256
− 1) −

𝐺𝐽

3𝐸𝐼𝑥
)⁄  (30) 
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3.6 FrPw-FrPw 

The assumed displacement functions this case are: 
 

𝑢(𝑧) = 𝑢𝑚

1

2
(1 − cos

2𝜋𝑧

𝐿
)             𝜑(𝑧) = 𝜑𝑚sin

𝜋𝑧

𝐿
 (31) 

 
where 𝑢𝑚 and 𝜑𝑚 are the displacement amplitudes (at the middle of the beam). Similarly to the 

previous case, these displacement functions satisfy the boundary conditions, but approximate.  

 

The 𝑀𝑐𝑟0 without prebuckling deflections is: 
 

𝑀𝑐𝑟0 =
𝜋

4/(3𝜋) 𝐿
√𝐸𝐼𝑦 (𝐺𝐽 +

𝜋2𝐸𝐼𝑤

𝐿2
) (32) 

 
For DSI sections the simplified formula is: 
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
) (1 + (

9𝜋2

16
− 1)

𝐼𝑦

𝐼𝑥
)⁄  (33) 

 
For RHS sections the simplified formula is: 
 

𝑀𝑐𝑟

𝑀𝑐𝑟0
= 1 √(1 −

𝐼𝑦

𝐼𝑥
) (1 +

𝐼𝑦

𝐼𝑥
(

9𝜋2

16
− 1) −

3𝐺𝐽

𝐸𝐼𝑥
)⁄  (34) 

 

 

4. Numerical studies 

 

4.1 Methodology 

Three methods have been employed: (a) analytical formula (as summarized in Section 3), (b) beam 

finite element, (c) shell finite element.  

 

Classic Linear Buckling Analysis (LBA) is performed on the initial (undeformed) geometry of the 

structure. This is how any commercial FEM software works, too. In other words, the prebuckling 

displacements are not considered in an LBA. If we still want to consider them, an iterative 

procedure is necessary, as follow. 

1. First, we perform classic LBA, and calculate 𝑀𝑐𝑟  (which, in this step, will be equal to 

𝑀𝑐𝑟0).  

2. We perform linear static analysis to get the deflected shape (i.e., the prebuckling shape), 

using the 𝑀𝑐𝑟 as load from the previous Step.  

3. We use the deflected shape from the previous step, and perform LBA on the deflected 

shape, from which we obtain a new value for 𝑀𝑐𝑟. 

Then we repeat steps 2 and 3 till convergence. This procedure is necessary to follow whether the 

calculation uses beam or shell elements.   

 

When beam finite element calculation is performed, it is important to make sure that the employed 

beam element properly considers the warping and Saint-Venant torsion of thin-walled members. 



 9 

In this study the we have used the educational Mastan2, by Ziemian et al. (2022), and the 

commercial Ansys software (Ansys, 2020). Since the results of these two programs are nearly 

identical for the cases discussed here, only the Mastan2 result will be presented. We have used 16 

beam elements along the length, and the load is applied as concentrated moments at the girder 

ends. 

 

In the case of shell FE calculations, we have used Ansys. The applied finite element is SHELL181, 

which is a 4-node element with 6 degrees of freedom per node. The out-of-plane behavior of the 

element is based on the Reissner-Mindlin plate theory, hence the out-of-plane shear deformations 

are directly considered. This is mechanically different from the analytical solution and from the 

beam FEM applied, where the shear deformations are disregarded.  

 

For the discretization of the model, the (average) element size was set to 40 mm. The concentrated 

end moment was put to the model by line pressures acting along the edges of the flange and web 

elements of the member at the midline of the shell elements.  

 

The supports were defined so that they imitate the beam-like supports as much as possible. The 

support realization is illustrated in Fig. 2, for both cross-sections. It is to note that the so-called 

master node is a separate node (not part of the member discretization), though in the case of DSI 

section its geometric location coincides with one of the nodes of the discretized member.  

 

 
Figure 2: Supports in the shell FEM model. 

 

4.2 Scope 

The above-presented analytical formulae have been applied to calculate critical moments with and 

without considering the prebuckling deflections. The results are compared to those from numerical 

methods. 
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A set of DSI sections are considered, defined as follows: the flange width is 200 mm, the flange 

and web thickness is 20 and 12 mm, respectively, while the total section depth (out-to-out) is a 

variable taking the following values: 150 mm, 160 mm, 180 mm, 200 mm, 300 mm, 400 mm, and 

500 mm.  

 

Similarly, a set of RHS sections are considered, as follows: the section width is 150 mm (out-to-

out), the flange and web thickness is 30 and 10 mm, respectively, the total section depth (out-to-

out) varies, taking the following values: 150 mm, 160 mm, 180 mm, 200 mm, 300 mm, 400 mm, 

500 mm and 1000 mm. 

 

In the case of the simplified analytical formula the member length has no effect on the 𝑀𝑐𝑟 𝑀𝑐𝑟0⁄  

ratio. It is also observed that in the Mastan2 calculations the beam length has marginal effect. 

Therefore, the presented analytical and Mastan2 results are valid to any beam length. In the case 

of shell FEM the 𝑀𝑐𝑟 𝑀𝑐𝑟0⁄  ratios are influenced by the length. This question is not further 

discussed here, but it is reasonable to assume that the shell FEM results are closer to the beam 

FEM results if the beam length is large, therefore, long beams have been considered for the shell 

FEM analyses.   

 

For the material a classic isotropic steel is considered, with a Young’s modulus equal to 

210000 MPa, and Poisson’s ratio equal to 0.3. 

 

4.3 Results 

In Figs. 3 to 7 the critical moment increments are plotted in terms of the inertia ratios. It is to 

mention that in the last figure no shell FEM results are plotted; the reason is that the FrPw support 

is all but impossible to realize in a shell model.  

 

As far as the DSI results are concerned, all the methods yield similar increments for any support 

condition. The agreement between the analytical and beam FEM results is particularly good. The 

shell model usually predicts slightly smaller increments. This is most certainly due to the fact that 

the shell model is more flexible, allowing various deformations which are excluded from the beam 

model (e.g., localized deformations, cross-section distortion, shear deformation). The results 

clearly show the significant influence of the supports. It can be understood that the warping fixity 

has relatively small influence, but the fixity of the rotation around the minor (vertical) axis has 

large effect. Moreover, the results suggest that the rotation fixity has a negative effect (i.e., it 

decreases the moment increment), while the warping fixity can have either a (small) positive or a 

(small) negative effect.  

 

In the case of the RHS the results are more scattered. When the shell FEM is used, the results are 

in good agreement with the analytical solution. However, they are affected by the non-beam-like 

deformations, most notably by the cross-section distortion, due to the fact that a closed cross-

section “prefers” to twist with small cross-section distortion which is hard to eliminate. The beam 

FEM results show large differences compared to the analytical solutions; this is remarkable since 

in the case of DSI sections the agreement between the analytical and beam model results is 

excellent.     
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Figure 3: 𝑀𝑐𝑟  increments, PrPw-PrPw, DSI (left) and RHS (right) 

 

  
Figure 4: 𝑀𝑐𝑟  increments, FrFw-FrFw, DSI (left) and RHS (right) 

 

  
Figure 5: 𝑀𝑐𝑟  increments, PrPw-FrFw, DSI (left) and RHS (right) 
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Figure 6: 𝑀𝑐𝑟  increments, PrFw-PrFw, DSI (left) and RHS (right) 

 

  
Figure 7: 𝑀𝑐𝑟  increments, FrPw-FrPw, DSI (left) and RHS (right) 

 

 

5. Conclusions 

It is known from the literature that the prebuckling deflection of a beam has an influence on the 

critical moment to lateral-torsional buckling. However, in previous investigations simply-

supported beams were considered. In this paper analytical and numerical studies were presented 

to investigate how the prebuckling deflection influences the critical moment to lateral-torsional 

buckling of beams with various end support conditions. The main conclusions are as follows. 

 Our results confirm the observation from the literature that the effect of prebuckling 

deflection becomes negligible if the ratio of the primary and lateral flexural stiffness of the 

beam (or: the ratio of the major-axis and minor-axis moment of inertia of the cross-section) 

is large. 

 Approximate analytical solutions can be derived for various end support conditions.  

 The end supports have important influence on the behavior. Unlike suggested by the 

previous literature, the effect of prebuckling deflection is not always positive. For example, 
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if the beam ends are fixed against lateral rotation, the prebuckling deflection decreases the 

critical moment in most cross sections.  

 The results of numerical studies show that the value of the critical moment with considering 

the prebuckling deflection is somewhat dependent on the method used for the analysis.  

 The analytical solution and beam finite element solution are nearly identical for I-shaped 

cross-section. However, significant discrepancy is observed in the case of rectangular 

hollow sections.  

 The tendencies shown by the shell model solutions are always similar to those obtained by 

the analytical solutions, though small differences between the numerical results is 

experienced. 
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